.devcontainer/devcontainer.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "Python 3",
3
+ // Or use a Dockerfile or Docker Compose file. More info: https://containers.dev/guide/dockerfile
4
+ "image": "mcr.microsoft.com/devcontainers/python:1-3.11-bullseye",
5
+ "customizations": {
6
+ "codespaces": {
7
+ "openFiles": [
8
+ "README.md",
9
+ "app.py"
10
+ ]
11
+ },
12
+ "vscode": {
13
+ "settings": {},
14
+ "extensions": [
15
+ "ms-python.python",
16
+ "ms-python.vscode-pylance"
17
+ ]
18
+ }
19
+ },
20
+ "updateContentCommand": "[ -f packages.txt ] && sudo apt update && sudo apt upgrade -y && sudo xargs apt install -y <packages.txt; [ -f requirements.txt ] && pip3 install --user -r requirements.txt; pip3 install --user streamlit; echo 'βœ… Packages installed and Requirements met'",
21
+ "postAttachCommand": {
22
+ "server": "streamlit run app.py --server.enableCORS false --server.enableXsrfProtection false"
23
+ },
24
+ "portsAttributes": {
25
+ "8501": {
26
+ "label": "Application",
27
+ "onAutoForward": "openPreview"
28
+ }
29
+ },
30
+ "forwardPorts": [
31
+ 8501
32
+ ]
33
+ }
.gitattributes CHANGED
@@ -33,4 +33,3 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
- data/raw_data/Data.csv filter=lfs diff=lfs merge=lfs -text
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
.gitignore CHANGED
@@ -4,4 +4,4 @@ __pycache__/
4
  *.pyo
5
 
6
  # Ignore CSV's present in raw_data folder
7
- *.env
 
4
  *.pyo
5
 
6
  # Ignore CSV's present in raw_data folder
7
+ */raw_data
README.md CHANGED
@@ -1,8 +1,8 @@
1
  ---
2
  title: VayuBuddy Question And Answer
3
  emoji: πŸš€
4
- colorFrom: yellow
5
- colorTo: green
6
  sdk: streamlit
7
  sdk_version: 1.42.0
8
  app_file: app.py
 
1
  ---
2
  title: VayuBuddy Question And Answer
3
  emoji: πŸš€
4
+ colorFrom: pink
5
+ colorTo: red
6
  sdk: streamlit
7
  sdk_version: 1.42.0
8
  app_file: app.py
app.py CHANGED
@@ -1,10 +1,6 @@
1
  import streamlit as st
2
- from utils.save_to_hf import commit_and_push_changes
3
 
4
  st.set_page_config(page_title="Coding Questions App", layout="wide")
5
  st.title("Welcome to the Coding Questions App!")
6
 
7
  st.write("Use the sidebar to navigate between pages.")
8
-
9
- if st.sidebar.button("Save to HF"):
10
- commit_and_push_changes()
 
1
  import streamlit as st
 
2
 
3
  st.set_page_config(page_title="Coding Questions App", layout="wide")
4
  st.title("Welcome to the Coding Questions App!")
5
 
6
  st.write("Use the sidebar to navigate between pages.")
 
 
 
data/questions/2/answer.txt DELETED
@@ -1 +0,0 @@
1
- Andhra Pradesh
 
 
data/questions/2/code.py DELETED
@@ -1,10 +0,0 @@
1
- def true_code():
2
- import pandas as pd
3
-
4
- df = pd.read_csv('data/raw_data/Data.csv', sep=",")
5
-
6
- data = df[df['PM2.5'] > 300]
7
- ans = data.groupby(['state', 'station']).value_counts().idxmax()[0]
8
- print(ans)
9
-
10
- true_code()
 
 
 
 
 
 
 
 
 
 
 
data/questions/2/metadata.json DELETED
@@ -1,9 +0,0 @@
1
- {
2
- "question_id": 2,
3
- "category": "spatial",
4
- "answer_category": "single",
5
- "plot": false,
6
- "libraries": [
7
- "pandas"
8
- ]
9
- }
 
 
 
 
 
 
 
 
 
 
data/questions/2/question.txt DELETED
@@ -1 +0,0 @@
1
- Which state had the most days with hazardous PM2.5 levels (above 300 Β΅g/mΒ³)?
 
 
data/questions/3/answer.txt DELETED
@@ -1,3 +0,0 @@
1
- Winter Average PM2.5: 67.4923443634478
2
- Monsoon Average PM2.5: 34.42519611317571
3
- Summer Average PM2.5: nan
 
 
 
 
data/questions/3/code.py DELETED
@@ -1,25 +0,0 @@
1
- def true_code():
2
- import pandas as pd
3
-
4
- df = pd.read_csv('data/raw_data/Data.csv', sep=",")
5
-
6
- df['Timestamp'] = pd.to_datetime(df['Timestamp'])
7
- df['Year'] = df['Timestamp'].dt.year
8
- df['Month'] = df['Timestamp'].dt.month
9
-
10
- data = df[df['Year'] == 2018]
11
- data = data[data['station'] == 'Lal Bahadur Shastri Nagar, Kalaburagi - KSPCB']
12
-
13
- winter_data = data[(data['Month'] == 12) | (data['Month'] <= 2)]
14
- summer_data = data[(data['Month'] >= 3) & (data['Month'] <= 5)]
15
- monsoon_data = data[(data['Month'] >= 6) & (data['Month'] <= 9)]
16
-
17
- summer_avg = summer_data['PM2.5'].mean()
18
- winter_avg = winter_data['PM2.5'].mean()
19
- monsoon_avg = monsoon_data['PM2.5'].mean()
20
-
21
- print("Winter Average PM2.5:", winter_avg)
22
- print("Monsoon Average PM2.5:", monsoon_avg)
23
- print("Summer Average PM2.5:", summer_avg)
24
-
25
- true_code()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
data/questions/3/metadata.json DELETED
@@ -1,9 +0,0 @@
1
- {
2
- "question_id": 3,
3
- "category": "temporal",
4
- "answer_category": "multiple",
5
- "plot": false,
6
- "libraries": [
7
- "pandas"
8
- ]
9
- }
 
 
 
 
 
 
 
 
 
 
data/questions/3/question.txt DELETED
@@ -1 +0,0 @@
1
- For the year 2018, calculate the average PM2.5 concentration for each season (Winter: December-February, Summer: March-May, and Monsoon: June-September) for station Lal Bahadur Shastri Nagar, Kalaburagi - KSPCB. Identify the season with the highest pollution and suggest potential factors contributing to the increase.
 
 
data/raw_data/Data.csv DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:77ea5aff6c41f6e8e5562a75ec4ac97f498debd706d3a047e1b57a9d8bd42be1
3
- size 266893056
 
 
 
 
data/raw_data/NCAP_Funding.csv DELETED
@@ -1,118 +0,0 @@
1
- S. No.,State,City,Amount released during FY 2019-20,Amount released during FY 2020-21,Amount released during FY 2021-22,Total fund released,Utilisation as on June 2022
2
- 1,Andhra Pradesh,Vijaywada,6,-,-,6,22.91
3
- 2,Andhra Pradesh,Guntur,0.12,0.76,1.96,2.84,22.91
4
- 3,Andhra Pradesh,Kurnool,0.06,0.76,1.36,2.18,22.91
5
- 4,Andhra Pradesh,Nellore,0.06,0.76,1.92,2.74,22.91
6
- 5,Andhra Pradesh,Visakhapatnam,0.12,-,-,0.12,22.91
7
- 6,Andhra Pradesh,Srikakulam,-,2,0.49,2.49,22.91
8
- 7,Andhra Pradesh,Chitoor,-,2,0.46,2.46,22.91
9
- 8,Andhra Pradesh,Ongole,-,2,0.64,2.64,22.91
10
- 9,Andhra Pradesh,vizianagaram,-,2,0.83,2.83,22.91
11
- 10,Andhra Pradesh,Eluru,-,2,0.82,2.82,22.91
12
- 11,Andhra Pradesh,Rajahmundry,-,2,1.13,3.13,22.91
13
- 12,Andhra Pradesh,Anantapur,-,2,1.04,3.04,22.91
14
- 13,Andhra Pradesh,Kadapa,-,1,0.83,1.83,22.91
15
- 14,Assam,Guwahati,0.12,5,-,5.12,1.45
16
- 15,Assam,Nagaon,0.06,2,-,2.06,1.45
17
- 16,Assam,Nalbari,0.06,1,-,1.06,1.45
18
- 17,Assam,Sibsagar,0.06,2,-,2.06,1.45
19
- 18,Assam,Silchar,0.06,2,-,2.06,1.45
20
- 19,Bihar,Patna,10,-,-,10,15.2
21
- 20,Bihar,Gaya,0.1,2,1.9,4,15.2
22
- 21,Bihar,Muzaffarpur,0.1,5,2.5,7.6,15.2
23
- 22,Chandigarh,Chandigarh,8.28,5,4.61,17.89,10.83
24
- 23,Chhattisgarh,Raipur,6,-,-,6,2.76
25
- 24,Chhattisgarh,Durg Bhilainagar,6,-,-,6,2.76
26
- 25,Chhattisgarh,Korba,0.06,1,-,1.06,2.76
27
- 26,Delhi,Delhi,-,-,11.25,11.25,-
28
- 27,Gujarat,Surat,6,-,-,6,12
29
- 28,Gujarat,Ahmedabad,6,-,-,6,12
30
- 29,Himachal Pradesh,Baddi (Baddi&nalagarh considered twin during FY 20-21),0.06,3,0.2,3.26,6.35
31
- 30,Himachal Pradesh,Nalagarh,0.06,-,0.06,0.12,6.35
32
- 31,Himachal Pradesh,Paonta Sahib,0.06,1,0.1,1.16,6.35
33
- 32,Himachal Pradesh,Sunder Nagar,0.06,1,0.08,1.14,6.35
34
- 33,Himachal Pradesh,Kala Amb,-,3,0,3,6.35
35
- 34,Himachal Pradesh,Damtal,-,1,0.01,1.01,6.35
36
- 35,Himachal Pradesh,Parwanoo,-,1,0.03,1.03,6.35
37
- 36,Jammu & Kashmir,Jammu,0.12,3,4.89,8.01,0.12
38
- 37,Jammu & Kashmir,Srinagar,-,5,7.95,12.95,0.12
39
- 38,Jharkhand,Dhanbad,6,-,-,6,3
40
- 39,Karnataka,Bangalore,6,-,-,6,7.39
41
- 40,Karnataka,Gulburga,0.12,0.38,2.24,2.74,7.39
42
- 41,Karnataka,Hubli-Dharwad,0.12,0.38,3.68,4.18,7.39
43
- 42,Karnataka,Devangere,0.06,0.76,1.4,2.22,7.39
44
- 43,Madhya Pradesh,Bhopal,10,-,-,10,20.96
45
- 44,Madhya Pradesh,Gwalior,10,-,-,10,20.96
46
- 45,Madhya Pradesh,Indore,0.2,-,-,0.2,20.96
47
- 46,Madhya Pradesh,Ujjain,0.2,0.38,2.33,2.91,20.96
48
- 47,Madhya Pradesh,Sagar,0.1,0.76,1.36,2.22,20.96
49
- 48,Madhya Pradesh,Dewas,0.1,0.38,1.33,1.81,20.96
50
- 49,Maharashtra,Mumbai,9.5,-,-,9.5,29.92
51
- 50,Maharashtra,Nagpur,9.45,-,-,9.45,29.92
52
- 51,Maharashtra,Navi Mumbai,9.45,-,-,9.45,29.92
53
- 52,Maharashtra,Pune,9.45,-,-,9.45,29.92
54
- 53,Maharashtra,Amravati,0.2,1.14,2.91,4.25,29.92
55
- 54,Maharashtra,Aurangabad,0.2,-,-,0.2,29.92
56
- 55,Maharashtra,Nashik,0.2,-,-,0.2,29.92
57
- 56,Maharashtra,Kolhapur,0.2,0.76,-,0.96,29.92
58
- 57,Maharashtra,Sangli,0.2,0.76,1.72,2.68,29.92
59
- 58,Maharashtra,Solapur,0.2,0.38,4.2,4.78,29.92
60
- 59,Maharashtra,Ulhasnagar,0.2,1.9,-,2.1,29.92
61
- 60,Maharashtra,Akola,0.1,1.14,1.47,2.71,29.92
62
- 61,Maharashtra,Badlapur,0.1,1.9,-,2,29.92
63
- 62,Maharashtra,Chandrapur,0.1,1.14,-,1.24,29.92
64
- 63,Maharashtra,Jalgaon,0.1,0.76,-,0.86,29.92
65
- 64,Maharashtra,Jalna,0.1,1.14,-,1.24,29.92
66
- 65,Maharashtra,Latur,0.1,0.38,1.6,2.08,29.92
67
- 66,Meghalaya,Byrnihat,-,3,0,3,1.97
68
- 67,Nagaland,Dimapur,0.06,3,0.53,3.59,6.12
69
- 68,Nagaland,Kohima,0.06,3,0.4,3.46,6.12
70
- 69,Odisha,Twin City Bhubaneshwar & Cuttack,6,-,-,6,3.62
71
- 70,Odisha,Balasore,0.06,0.76,-,0.82,3.62
72
- 71,Odisha,Rourkela,0.06,1.14,-,1.2,3.62
73
- 72,Odisha,Angul,0.06,1.14,-,1.2,3.62
74
- 73,Odisha,Kalinga Nagar,-,3,-,3,3.62
75
- 74,Odisha,Talcher,-,-,0.22,0.22,3.62
76
- 75,Odisha,Cuttack,-,-,3.42,3.42,3.62
77
- 76,Punjab,Ludhiana,6,-,-,6,3.02
78
- 77,Punjab,Amritsar,6,-,-,6,3.02
79
- 78,Punjab,Jalandhar,0.12,4,-,4.12,3.02
80
- 79,Punjab,Khanna,0.06,1.9,-,1.96,3.02
81
- 80,Punjab,Gobindgarh,0.06,3,-,3.06,3.02
82
- 81,Punjab,NayaNangal,0.06,1,-,1.06,3.02
83
- 82,Punjab,Dera Baba Nanak,0.06,0.76,-,0.82,3.02
84
- 83,Punjab,Patiala,0.06,4,-,4.06,3.02
85
- 84,Punjab,DeraBassi,0.06,0.38,-,0.44,3.02
86
- 85,Rajasthan,Jaipur,6,-,-,6,12.55
87
- 86,Rajasthan,Jodhpur,6,-,-,6,12.55
88
- 87,Rajasthan,Kota,6,-,-,6,12.55
89
- 88,Rajasthan,Alwar,0.06,1.9,-,1.96,12.55
90
- 89,Rajasthan,Udaipur,0.06,1.9,-,1.96,12.55
91
- 90,Tamil Nadu,Tuticorin,0.06,3,-,3.06,-
92
- 91,Telangana,Hyderabad,10.8,-,-,10.8,9.72
93
- 92,Telangana,Nalgonda,0.1,0.38,0.47,0.95,9.72
94
- 93,Telangana,Patencheru,0.1,0.38,-,0.48,9.72
95
- 94,Telangana,Sangareddy,-,2,0.32,2.32,9.72
96
- 95,Uttar Pradesh,Agra,9.45,-,-,9.45,30.57
97
- 96,Uttar Pradesh,Allahabad,9.45,-,-,9.45,30.57
98
- 97,Uttar Pradesh,Kanpur,9.45,-,-,9.45,30.57
99
- 98,Uttar Pradesh,Lucknow,9.45,-,-,9.45,30.57
100
- 99,Uttar Pradesh,Varanasi,9.47,-,-,9.47,30.57
101
- 100,Uttar Pradesh,Moradabad,0.2,1.9,-,2.1,30.57
102
- 101,Uttar Pradesh,Bareily,0.2,1.9,-,2.1,30.57
103
- 102,Uttar Pradesh,Firozabad,0.2,1.9,-,2.1,30.57
104
- 103,Uttar Pradesh,Jhansi,0.2,1.14,-,1.34,30.57
105
- 104,Uttar Pradesh,Khurja,0.1,1.9,-,2,30.57
106
- 105,Uttar Pradesh,Anpara,0.1,1.14,-,1.24,30.57
107
- 106,Uttar Pradesh,Gajraula,0.1,1.14,-,1.24,30.57
108
- 107,Uttar Pradesh,Raebareli,0.1,1.14,-,1.24,30.57
109
- 108,Uttar Pradesh,Gorakhpur,-,-,9.64,9.64,30.57
110
- 109,Uttar Pradesh,Noida,-,-,6.67,6.67,30.57
111
- 110,Uttarakhand,Kashipur,0.06,3,0.79,3.85,8.15
112
- 111,Uttarakhand,Rishikesh,0.06,5,-,5.06,8.15
113
- 112,Uttarakhand,Dehradun,-,3,4.88,7.88,8.15
114
- 113,West Bengal,Kolkata,6,-,-,6,19
115
- 114,West Bengal,Howrah,-,5,-,5,19
116
- 115,West Bengal,Haldia,-,3,-,3,19
117
- 116,West Bengal,Durgapur,-,3,-,3,19
118
- 117,West Bengal,Barrackpore,-,2,-,2,19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
data/raw_data/State_data.csv DELETED
@@ -1,32 +0,0 @@
1
- State,Population,Area (km2)
2
- Uttar Pradesh,199812341,240928
3
- Maharashtra,112374333,307713
4
- Bihar,104099452,94163
5
- West Bengal,91276115,88752
6
- Madhya Pradesh,72626809,308252
7
- Tamil Nadu,72147030,130058
8
- Rajasthan,68548437,342239
9
- Karnataka,61095297,191791
10
- Gujarat,60439692,196024
11
- Andhra Pradesh,49577103,162975
12
- Odisha,41974219,155707
13
- Telangana,35003674,112077
14
- Kerala,33406061,38863
15
- Jharkhand,32988134,79716
16
- Assam,31205576,78438
17
- Punjab,27743338,50362
18
- Chhattisgarh,25545198,135192
19
- Delhi,16787941,1484
20
- Haryana,25351462,44212
21
- Jammu and Kashmir,12267032,42241
22
- Uttarakhand,10086292,53483
23
- Himachal Pradesh,6864602,55673
24
- Tripura,3673917,10491
25
- Manipur,2570390,22327
26
- Meghalaya,2966889,22429
27
- Nagaland,1978502,16579
28
- Arunachal Pradesh,1383727,83743
29
- Puducherry,1247953,479
30
- Mizoram,1097206,21081
31
- Chandigarh,1055450,114
32
- Sikkim,610577,7096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
output.jsonl CHANGED
@@ -1 +1,2 @@
1
- {"folder": 3, "question": "For the year 2018, calculate the average PM2.5 concentration for each season (Winter: December-February, Summer: March-May, and Monsoon: June-September) for station Lal Bahadur Shastri Nagar, Kalaburagi - KSPCB. Identify the season with the highest pollution and suggest potential factors contributing to the increase.", "answer": "Winter Average PM2.5: 67.4923443634478\nMonsoon Average PM2.5: 34.42519611317571\nSummer Average PM2.5: nan", "code": "def true_code():\n import pandas as pd\n \n df = pd.read_csv('data/raw_data/Data.csv', sep=\",\")\n \n df['Timestamp'] = pd.to_datetime(df['Timestamp'])\n df['Year'] = df['Timestamp'].dt.year\n df['Month'] = df['Timestamp'].dt.month\n \n data = df[df['Year'] == 2018]\n data = data[data['station'] == 'Lal Bahadur Shastri Nagar, Kalaburagi - KSPCB']\n \n winter_data = data[(data['Month'] == 12) | (data['Month'] <= 2)]\n summer_data = data[(data['Month'] >= 3) & (data['Month'] <= 5)]\n monsoon_data = data[(data['Month'] >= 6) & (data['Month'] <= 9)]\n \n summer_avg = summer_data['PM2.5'].mean()\n winter_avg = winter_data['PM2.5'].mean()\n monsoon_avg = monsoon_data['PM2.5'].mean()\n \n print(\"Winter Average PM2.5:\", winter_avg)\n print(\"Monsoon Average PM2.5:\", monsoon_avg)\n print(\"Summer Average PM2.5:\", summer_avg)\n\ntrue_code()", "metadata": {"question_id": 3, "category": "temporal", "answer_category": "multiple", "plot": false, "libraries": ["pandas"]}}
 
 
1
+ {"folder": "0", "question": "Which state has the highest average PM2.5 concentration across all stations?", "answer": "Delhi", "code": "def true_code():\n import pandas as pd\n \n df = pd.read_csv('data/raw_data/Data.csv', sep=\",\")\n \n data = df.groupby(['state','station'])['PM2.5'].mean()\n ans = data.idxmax()[0]\n print(ans)\n\ntrue_code()", "metadata": {"question_id": 0, "category": "spatial", "answer_category": "single", "plot": false, "libraries": ["pandas"]}}
2
+ {"folder": "1", "question": "Report the station that recorded the highest value of PM 2.5 for the month Aug of 2020", "answer": "Lal Bahadur Shastri Nagar, Kalaburagi ", "code": "def true_code():\n import pandas as pd\n \n df = pd.read_csv('data/raw_data/Data.csv', sep=\",\")\n \n df['Timestamp'] = pd.to_datetime(df['Timestamp'])\n \n df['Year'] = df['Timestamp'].dt.year\n df['Month'] = df['Timestamp'].dt.month\n data = df[(df['Year'] == 2020) & (df['Month'] == 8)]\n ans = data.groupby('station')['PM2.5'].max().idxmax()\n print(ans)\n\ntrue_code()", "metadata": {"question_id": 2, "category": "temporal", "answer_category": "double", "plot": false, "libraries": ["pandas"]}}
pages/3_Add_Questions.py CHANGED
@@ -52,17 +52,6 @@ if st.button("Save Question"):
52
  with open(question_dir / "metadata.json", "w", encoding="utf-8") as f:
53
  json.dump(metadata, f, indent=4)
54
 
55
- new_entry = {
56
- "folder": question_id,
57
- "question": question_text,
58
- "answer": answer_text,
59
- "code": formatted_code,
60
- "metadata": metadata
61
- }
62
-
63
- with open ("output.jsonl", "a", encoding="utf-8") as f:
64
- f.write(json.dumps(new_entry, ensure_ascii=False) + "\n")
65
-
66
  st.success(f"βœ… Question saved successfully! (ID: {question_id})")
67
  st.info("refresh in-order to see the applied changes")
68
  if st.button("refresh") :
 
52
  with open(question_dir / "metadata.json", "w", encoding="utf-8") as f:
53
  json.dump(metadata, f, indent=4)
54
 
 
 
 
 
 
 
 
 
 
 
 
55
  st.success(f"βœ… Question saved successfully! (ID: {question_id})")
56
  st.info("refresh in-order to see the applied changes")
57
  if st.button("refresh") :
pages/5_Delete_Question.py CHANGED
@@ -62,7 +62,7 @@ if selected_question:
62
  question_folder = DATA_DIR / str(selected_question_id)
63
  if question_folder.exists():
64
  shutil.rmtree(question_folder)
65
- rename_folders(selected_question_id)
66
  st.success(f"βœ… Question ID {selected_question_id} deleted successfully!")
67
  st.info("Refresh to see the applied changes")
68
  if st.button("Refresh"):
 
62
  question_folder = DATA_DIR / str(selected_question_id)
63
  if question_folder.exists():
64
  shutil.rmtree(question_folder)
65
+ rename_folders(selected_question_id)
66
  st.success(f"βœ… Question ID {selected_question_id} deleted successfully!")
67
  st.info("Refresh to see the applied changes")
68
  if st.button("Refresh"):
utils/save_to_hf.py DELETED
@@ -1,34 +0,0 @@
1
- def commit_and_push_changes():
2
- import os
3
- import subprocess
4
- from pathlib import Path
5
-
6
- # Define the paths
7
- REPO_DIR = Path(".") # Root directory of your Hugging Face Space repo
8
- DATA_DIR = REPO_DIR / "data/questions" # Persistent storage in the repo
9
- JSONL_FILE = REPO_DIR / "output.jsonl"
10
-
11
- DATA_DIR.mkdir(parents=True, exist_ok=True) # Ensure directory exists
12
-
13
- GIT_USER = os.getenv("GIT_USER")
14
- GIT_EMAIL = os.getenv("GIT_EMAIL")
15
- HF_OWNER = os.getenv("HF_OWNER")
16
- HF_TOKEN = os.getenv("HF_TOKEN")
17
- REPO_NAME = os.getenv("REPO_NAME")
18
- REPO_URL = f"https://{HF_OWNER}:{HF_TOKEN}@huggingface.co/spaces/{REPO_NAME}"
19
-
20
- # Set remote URL before pushing
21
-
22
- """Automates Git add, commit, and push for updated data."""
23
- try:
24
- # Run Git commands
25
- subprocess.run(["git", "config", "--global", "user.name", GIT_USER], check=True)
26
- subprocess.run(["git", "config", "--global", "user.email", GIT_EMAIL], check=True)
27
- subprocess.run(["git", "remote", "set-url", "origin", REPO_URL], check=True)
28
- subprocess.run(["git", "add", "--all"], check=True)
29
- subprocess.run(["git", "commit", "-m", "Update questions data"], check=True)
30
- subprocess.run(["git", "push", "origin", "main"], check=True)
31
- print("βœ… Data committed and pushed successfully!")
32
-
33
- except subprocess.CalledProcessError as e:
34
- print(f"❌ Git operation failed: {e}")