|
import streamlit as st |
|
import requests |
|
import os |
|
from dotenv import load_dotenv |
|
from requests.exceptions import RequestException, HTTPError, ConnectionError, Timeout, TooManyRedirects, JSONDecodeError |
|
from textblob import TextBlob |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
def reset_conversation(): |
|
st.session_state.messages = [] |
|
st.session_state.ask_intervention = False |
|
return None |
|
|
|
|
|
def interact_with_together_api(messages, model_link): |
|
all_messages = [] |
|
|
|
if not any("role" in msg for msg in messages): |
|
all_messages.append({"role": "system", "content": model_pre_instructions[selected_model]}) |
|
else: |
|
all_messages.append({"role": "system", "content": f"Switched to model: {selected_model}"}) |
|
|
|
for human, assistant in messages: |
|
all_messages.append({"role": "user", "content": human}) |
|
all_messages.append({"role": "assistant", "content": assistant}) |
|
|
|
all_messages.append({"role": "user", "content": messages[-1][1]}) |
|
|
|
url = "https://api.together.xyz/v1/chat/completions" |
|
payload = { |
|
"model": model_link, |
|
"temperature": 1.05, |
|
"top_p": 0.9, |
|
"top_k": 50, |
|
"repetition_penalty": 1, |
|
"n": 1, |
|
"messages": all_messages, |
|
} |
|
|
|
TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY') |
|
headers = { |
|
"accept": "application/json", |
|
"content-type": "application/json", |
|
"Authorization": f"Bearer {TOGETHER_API_KEY}", |
|
} |
|
|
|
try: |
|
response = requests.post(url, json=payload, headers=headers) |
|
response.raise_for_status() |
|
|
|
response_data = response.json() |
|
assistant_response = response_data["choices"][0]["message"]["content"] |
|
|
|
return assistant_response |
|
|
|
except (HTTPError, ConnectionError, Timeout, TooManyRedirects) as e: |
|
st.error(f"Error communicating with the API: {e}") |
|
return None |
|
|
|
except JSONDecodeError as e: |
|
st.error(f"Error decoding JSON response: {e}") |
|
return None |
|
|
|
except RequestException as e: |
|
st.error(f"RequestException: {e}") |
|
return None |
|
|
|
|
|
def analyze_sentiment(messages): |
|
sentiments = [] |
|
for _, message in messages: |
|
blob = TextBlob(message) |
|
sentiment_score = blob.sentiment.polarity |
|
sentiments.append(sentiment_score) |
|
|
|
|
|
average_sentiment = sum(sentiments) / len(sentiments) |
|
return average_sentiment |
|
|
|
|
|
if "messages" not in st.session_state: |
|
st.session_state.messages = [] |
|
st.session_state.ask_intervention = False |
|
|
|
|
|
model_links = { |
|
"Addiction recovery AI": "NousResearch/Nous-Hermes-2-Yi-34B", |
|
"Mental health AI": "NousResearch/Nous-Hermes-2-Yi-34B" |
|
} |
|
selected_model = st.sidebar.selectbox("Select Model", list(model_links.keys())) |
|
reset_button = st.sidebar.button('Reset Chat', on_click=reset_conversation) |
|
|
|
|
|
max_input_length = 100 |
|
if prompt := st.chat_input(f"Hi, I'm {selected_model}, let's chat (Max {max_input_length} characters)"): |
|
if len(prompt) > max_input_length: |
|
st.error(f"Maximum input length exceeded. Please limit your input to {max_input_length} characters.") |
|
else: |
|
with st.chat_message("user"): |
|
st.markdown(prompt) |
|
st.session_state.messages.append(("user", prompt)) |
|
|
|
|
|
assistant_response = interact_with_together_api(st.session_state.messages, model_links[selected_model]) |
|
|
|
if assistant_response is not None: |
|
with st.empty(): |
|
st.markdown("AI is typing...") |
|
st.empty() |
|
st.markdown(assistant_response) |
|
|
|
if any(keyword in prompt.lower() for keyword in ["human", "therapist", "someone", "died", "death", "help", "suicide", "suffering", "crisis", "emergency", "support", "depressed", "anxiety", "lonely", "desperate", "struggling", "counseling", "distressed", "hurt", "pain", "grief", "trauma", "abuse", "danger", "risk", "urgent", "need assistance"]): |
|
if not st.session_state.ask_intervention: |
|
if st.button("After the analyzing our session you may need some extra help, so you can reach out to a certified therapist at +25493609747 Name: Ogega feel free to talk"): |
|
st.write("You can reach out to a certified therapist at +25493609747.") |
|
|
|
st.session_state.messages.append(("assistant", assistant_response)) |
|
|
|
|
|
st.sidebar.subheader("Conversation Insights") |
|
average_sentiment = analyze_sentiment(st.session_state.messages) |
|
st.sidebar.write(f"Average Sentiment: {average_sentiment}") |
|
|
|
|
|
st.sidebar.image("https://assets.isu.pub/document-structure/221118065013-a6029cf3d563afaf9b946bb9497d45d4/v1/2841525b232adaef7bd0efe1da81a4c5.jpeg", width=200) |
|
st.sidebar.write("A product proudly developed by Kisii University") |
|
|