File size: 12,547 Bytes
9f54a3b 71ec4a8 9f54a3b 0e00146 a645649 c50f71f 866f7a8 9d150a9 866f7a8 a9c7401 91d2c85 7f8c6d6 71ec4a8 866f7a8 71ec4a8 8092b5a 71ec4a8 866f7a8 7fcff87 91d2c85 7fcff87 91d2c85 7fcff87 91d2c85 866f7a8 91d2c85 a645649 91d2c85 7f8c6d6 0957448 7f8c6d6 866f7a8 7f8c6d6 866f7a8 7f8c6d6 0957448 7fcff87 9104631 65e9088 7f8c6d6 65e9088 7f8c6d6 65e9088 45b3e7d 7f8c6d6 65e9088 7f8c6d6 65e9088 7f8c6d6 65e9088 866f7a8 65e9088 7f8c6d6 65e9088 866f7a8 7f8c6d6 91d2c85 7f8c6d6 91d2c85 9ad5122 866f7a8 a645649 866f7a8 91d2c85 866f7a8 91d2c85 a645649 866f7a8 91d2c85 866f7a8 9104631 866f7a8 91d2c85 9ad5122 866f7a8 91d2c85 866f7a8 91d2c85 65eab1d 71ec4a8 9104631 91d2c85 866f7a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import streamlit as st
import requests
import os
import json
import pandas as pd
import plotly.graph_objects as go
import plotly.express as px
import time
import random
from datetime import datetime, timedelta
# Custom CSS for styling
st.markdown("""
<style>
.stApp {
background: #f5f5f5;
}
.header {
font-size: 36px;
font-weight: bold;
color: #4CAF50;
text-align: center;
margin-bottom: 20px;
}
.subheader {
font-size: 24px;
font-weight: bold;
color: #4CAF50;
text-align: center;
margin-bottom: 20px;
}
.section {
background: white;
padding: 20px;
border-radius: 10px;
box-shadow: 0px 4px 12px rgba(0, 0, 0, 0.1);
margin-bottom: 20px;
}
.footer {
text-align: center;
font-size: 14px;
color: #777;
margin-top: 20px;
}
</style>
""", unsafe_allow_html=True)
# Function to call the Together AI model
def call_ai_model(all_message):
url = "https://api.together.xyz/v1/chat/completions"
payload = {
"model": "NousResearch/Nous-Hermes-2-Yi-34B",
"temperature": 1.05,
"top_p": 0.9,
"top_k": 50,
"repetition_penalty": 1,
"n": 1,
"messages": [{"role": "user", "content": all_message}],
"stream_tokens": True,
}
TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY')
if TOGETHER_API_KEY is None:
raise ValueError("TOGETHER_API_KEY environment variable not set.")
headers = {
"accept": "application/json",
"content-type": "application/json",
"Authorization": f"Bearer {TOGETHER_API_KEY}",
}
response = requests.post(url, json=payload, headers=headers, stream=True)
response.raise_for_status()
return response
# Function to generate simulated trust scores
def generate_trust_scores(technologies, issues):
trust_scores = {}
for tech in technologies:
trust_scores[tech] = {}
for issue in issues:
trust_scores[tech][issue] = random.uniform(0, 1)
return trust_scores
# Function to generate simulated kinship impact scores
def generate_kinship_impact(technologies):
impact_scores = {}
kinship_aspects = ["Family Communication", "Intergenerational Relationships", "Cultural Traditions"]
for tech in technologies:
impact_scores[tech] = {}
for aspect in kinship_aspects:
impact_scores[tech][aspect] = random.uniform(-1, 1)
return impact_scores
# Function to generate simulated gender impact scores
def generate_gender_impact(technologies, genders):
impact_scores = {}
for tech in technologies:
impact_scores[tech] = {}
for gender in genders:
impact_scores[tech][gender] = random.uniform(-1, 1)
return impact_scores
# Function to generate simulated geographic usage data
def generate_geographic_data(technologies, regions):
geo_data = {}
for region in regions:
geo_data[region] = {}
for tech in technologies:
geo_data[region][tech] = random.uniform(0, 100)
return geo_data
# Function to generate simulated long-term economic impact
def generate_economic_impact(technologies):
impact_data = {}
indicators = ["GDP Growth", "Employment Rate", "Digital Literacy"]
for tech in technologies:
impact_data[tech] = {}
for indicator in indicators:
impact_data[tech][indicator] = [random.uniform(-2, 5) for _ in range(5)] # 5-year projection
return impact_data
# Streamlit app layout
st.markdown('<div class="header">Digital Technologies, Kinship, and Gender in Kenya</div>', unsafe_allow_html=True)
st.markdown('<div class="subheader">Analyze and visualize the impact of digital technologies on kinship and gender dynamics in Kenya.</div>', unsafe_allow_html=True)
# Input section
with st.container():
st.markdown('<div class="section">', unsafe_allow_html=True)
st.subheader("Digital Technology Impacts")
digital_technologies = st.multiselect("Select digital technologies:", ["Big Data Analytics", "Biometric Authentication", "Blockchain", "E-commerce", "Social Media Platforms"])
issues = st.multiselect("Select issues of concern:", ["Trust", "Mistrust", "Data Privacy", "Fraud", "Social Classification"])
st.subheader("Kenya-Specific Inputs")
regions = st.multiselect("Select regions in Kenya:", ["Nairobi", "Mombasa", "Kisumu", "Nakuru", "Eldoret"])
gender_focus = st.multiselect("Select gender focus:", ["Male", "Female", "Non-binary"])
st.markdown('</div>', unsafe_allow_html=True)
# Button to generate analysis
if st.button("Generate Analysis"):
all_message = (
f"Analyze the impact of digital technologies on kinship and gender dynamics in Kenya. "
f"Digital technologies: {', '.join(digital_technologies)}. "
f"Issues of concern: {', '.join(issues)}. "
f"Regions: {', '.join(regions)}. Gender focus: {', '.join(gender_focus)}. "
f"Provide a detailed analysis of how these technologies impact family ties, trust, and gender roles. "
f"Include specific impacts for each digital technology and issue. "
f"Organize the information in tables with the following columns: Digital Technology, Impact on Kinship, Impact on Gender Dynamics, Trust Issues. "
f"Be as accurate and specific to Kenya as possible in your analysis. Make the response short and precise."
)
try:
stages = [
"Analyzing digital technologies...",
"Checking location data...",
"Running simulations...",
"Processing data...",
"Assessing impacts...",
"Calculating predictions...",
"Compiling results...",
"Finalizing analysis...",
"Preparing output..."
]
with st.spinner("Analyzing digital technologies and generating analysis..."):
for stage in stages:
st.spinner(stage)
time.sleep(2)
response = call_ai_model(all_message)
analysis_text = ""
for line in response.iter_lines():
if line:
line_content = line.decode('utf-8')
if line_content.startswith("data: "):
line_content = line_content[6:]
try:
json_data = json.loads(line_content)
if "choices" in json_data:
delta = json_data["choices"][0]["delta"]
if "content" in delta:
analysis_text += delta["content"]
except json.JSONDecodeError:
continue
st.success("Analysis completed!")
# Display analysis
st.markdown('<div class="section">', unsafe_allow_html=True)
st.subheader("Digital Technologies Impact Analysis in Kenya")
st.markdown(analysis_text.strip())
st.markdown('</div>', unsafe_allow_html=True)
# Generate simulated data
trust_scores = generate_trust_scores(digital_technologies, issues)
kinship_impact = generate_kinship_impact(digital_technologies)
gender_impact = generate_gender_impact(digital_technologies, gender_focus)
geo_data = generate_geographic_data(digital_technologies, regions)
economic_impact = generate_economic_impact(digital_technologies)
# Trust and Fraud Metrics Visualization
st.markdown('<div class="section">', unsafe_allow_html=True)
st.subheader("Trust and Fraud Metrics")
fig_trust = go.Figure()
for tech in digital_technologies:
fig_trust.add_trace(go.Bar(
x=list(trust_scores[tech].keys()),
y=list(trust_scores[tech].values()),
name=tech
))
fig_trust.update_layout(barmode='group', title="Trust Scores by Technology and Issue")
st.plotly_chart(fig_trust)
st.markdown('</div>', unsafe_allow_html=True)
# Kinship Structure Analysis
st.markdown('<div class="section">', unsafe_allow_html=True)
st.subheader("Impact on Kinship Structures")
fig_kinship = go.Figure()
for tech in digital_technologies:
fig_kinship.add_trace(go.Scatterpolar(
r=list(kinship_impact[tech].values()),
theta=list(kinship_impact[tech].keys()),
fill='toself',
name=tech
))
fig_kinship.update_layout(polar=dict(radialaxis=dict(visible=True, range=[-1, 1])), showlegend=True)
st.plotly_chart(fig_kinship)
st.markdown('</div>', unsafe_allow_html=True)
# Gender Impact Visualization
st.markdown('<div class="section">', unsafe_allow_html=True)
st.subheader("Gender Impact Analysis")
fig_gender = go.Figure()
for tech in digital_technologies:
fig_gender.add_trace(go.Bar(
x=list(gender_impact[tech].keys()),
y=list(gender_impact[tech].values()),
name=tech
))
fig_gender.update_layout(barmode='group', title="Gender Impact by Technology")
st.plotly_chart(fig_gender)
st.markdown('</div>', unsafe_allow_html=True)
# Geographic Component
st.markdown('<div class="section">', unsafe_allow_html=True)
st.subheader("Geographic Distribution of Technology Usage")
fig_geo = px.choropleth(
locations=regions,
locationmode="country names",
color=[sum(geo_data[region].values()) for region in regions],
hover_name=regions,
color_continuous_scale=px.colors.sequential.Viridis,
title="Technology Usage Intensity Across Kenya"
)
fig_geo.update_geos(fitbounds="locations", visible=False)
st.plotly_chart(fig_geo)
st.markdown('</div>', unsafe_allow_html=True)
# Long-term Economic Impact
st.markdown('<div class="section">', unsafe_allow_html=True)
st.subheader("Projected Long-term Economic Impact")
fig_economic = go.Figure()
years = [datetime.now().year + i for i in range(5)]
for tech in digital_technologies:
for indicator in economic_impact[tech]:
fig_economic.add_trace(go.Scatter(
x=years,
y=economic_impact[tech][indicator],
mode='lines+markers',
name=f"{tech} - {indicator}"
))
fig_economic.update_layout(title="5-Year Economic Impact Projection", xaxis_title="Year", yaxis_title="Impact (%)")
st.plotly_chart(fig_economic)
st.markdown('</div>', unsafe_allow_html=True)
# Ethical Considerations
st.markdown('<div class="section">', unsafe_allow_html=True)
st.subheader("Ethical Considerations")
ethical_concerns = [
"Data Privacy: Ensuring user data is protected and used responsibly.",
"Digital Divide: Addressing inequality in access to digital technologies.",
"Cultural Preservation: Balancing technological advancement with traditional values.",
"Algorithmic Bias: Mitigating biases in AI and machine learning systems.",
"Cybersecurity: Protecting users from fraud and cyber attacks."
]
for concern in ethical_concerns:
st.write(f"• {concern}")
st.markdown('</div>', unsafe_allow_html=True)
except ValueError as ve:
st.error(f"Configuration error: {ve}")
except requests.exceptions.RequestException as re:
st.error(f"Request error: {re}")
except Exception as e:
st.error(f"An unexpected error occurred: {e}")
# Footer
st.markdown('<div class="footer">Powered by Together AI and Streamlit</div>', unsafe_allow_html=True) |