File size: 9,641 Bytes
9f54a3b
71ec4a8
9f54a3b
0e00146
a645649
c50f71f
a9c7401
a645649
 
71ec4a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8092b5a
71ec4a8
a645649
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fcff87
a645649
 
7fcff87
c438b94
7fcff87
c438b94
 
0957448
 
 
 
7fcff87
c50f71f
 
 
 
 
 
a645649
7fcff87
0957448
c50f71f
a645649
 
c50f71f
 
 
 
cae1d9a
0957448
7fcff87
 
a645649
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf0b824
a645649
c50f71f
 
 
fa025b1
a645649
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c50f71f
a645649
c50f71f
a645649
c50f71f
65eab1d
c50f71f
 
a645649
 
 
 
 
 
 
 
 
c50f71f
a645649
fa025b1
c50f71f
 
 
 
 
 
 
 
 
 
 
 
 
 
a645649
c50f71f
a645649
bf0b824
c50f71f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa025b1
65eab1d
c50f71f
 
65eab1d
71ec4a8
 
 
 
 
65eab1d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import streamlit as st
import requests
import os
import json
import pandas as pd
import plotly.graph_objects as go

# Function to call the Together AI model for the initial analysis
def call_ai_model_initial(all_message):
    url = "https://api.together.xyz/v1/chat/completions"
    payload = {
        "model": "NousResearch/Nous-Hermes-2-Yi-34B",
        "temperature": 1.05,
        "top_p": 0.9,
        "top_k": 50,
        "repetition_penalty": 1,
        "n": 1,
        "messages": [{"role": "user", "content": all_message}],
        "stream_tokens": True,
    }

    TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY')
    if TOGETHER_API_KEY is None:
        raise ValueError("TOGETHER_API_KEY environment variable not set.")
    
    headers = {
        "accept": "application/json",
        "content-type": "application/json",
        "Authorization": f"Bearer {TOGETHER_API_KEY}",
    }

    response = requests.post(url, json=payload, headers=headers, stream=True)
    response.raise_for_status()  # Ensure HTTP request was successful

    return response

# Function to call the Together AI model for analyzing the text and computing performance score
def call_ai_model_analysis(analysis_text):
    url = "https://api.together.xyz/v1/chat/completions"
    payload = {
        "model": "NousResearch/Nous-Hermes-2-Yi-34B",
        "temperature": 1.05,
        "top_p": 0.9,
        "top_k": 50,
        "repetition_penalty": 1,
        "n": 1,
        "messages": [{"role": "user", "content": analysis_text}],
        "stream_tokens": True,
    }

    TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY')
    if TOGETHER_API_KEY is None:
        raise ValueError("TOGETHER_API_KEY environment variable not set.")
    
    headers = {
        "accept": "application/json",
        "content-type": "application/json",
        "Authorization": f"Bearer {TOGETHER_API_KEY}",
    }

    response = requests.post(url, json=payload, headers=headers, stream=True)
    response.raise_for_status()  # Ensure HTTP request was successful

    return response

# Streamlit app layout
st.title("Climate Impact on Sports Performance and Infrastructure")
st.write("Analyze and visualize the impact of climate conditions on sports performance and infrastructure.")

# Inputs for climate conditions
temperature = st.number_input("Temperature (°C):", min_value=-50, max_value=50, value=25)
humidity = st.number_input("Humidity (%):", min_value=0, max_value=100, value=50)
wind_speed = st.number_input("Wind Speed (km/h):", min_value=0.0, max_value=200.0, value=15.0)
uv_index = st.number_input("UV Index:", min_value=0, max_value=11, value=5)
air_quality_index = st.number_input("Air Quality Index:", min_value=0, max_value=500, value=100)
precipitation = st.number_input("Precipitation (mm):", min_value=0.0, max_value=500.0, value=10.0)
atmospheric_pressure = st.number_input("Atmospheric Pressure (hPa):", min_value=900, max_value=1100, value=1013)

# Sports and athlete inputs
sports = st.multiselect("Select sports:", ["Football", "Tennis", "Athletics", "Swimming", "Basketball", "Golf"])
athlete_types = st.multiselect("Select athlete types:", ["Professional", "Amateur", "Youth", "Senior"])

# Infrastructure inputs
infrastructure_types = st.multiselect("Select infrastructure types:", ["Outdoor Stadium", "Indoor Arena", "Swimming Pool", "Tennis Court", "Golf Course"])

if st.button("Generate Prediction"):
    all_message = (
        f"Assess the impact on sports performance, athletes, and infrastructure based on climate conditions: "
        f"Temperature {temperature}°C, Humidity {humidity}%, Wind Speed {wind_speed} km/h, UV Index {uv_index}, "
        f"Air Quality Index {air_quality_index}, Precipitation {precipitation} mm, Atmospheric Pressure {atmospheric_pressure} hPa. "
        f"Sports: {', '.join(sports)}. Athlete types: {', '.join(athlete_types)}. "
        f"Infrastructure types: {', '.join(infrastructure_types)}. "
        f"Provide a detailed analysis of how these conditions affect performance, health, and infrastructure. "
        f"Include specific impacts for each sport, athlete type, and infrastructure type. "
        f"Also, provide an overall performance score and an infrastructure impact score, both as percentages. Lastly i need you organize everything in tables, not random paragraphs and do your best to be accurate in your analysis"
    )

    try:
        with st.spinner("Analyzing climate conditions..."):
            initial_response = call_ai_model_initial(all_message)

            initial_text = ""
            for line in initial_response.iter_lines():
                if line:
                    line_content = line.decode('utf-8')
                    if line_content.startswith("data: "):
                        line_content = line_content[6:]  # Strip "data: " prefix
                    try:
                        json_data = json.loads(line_content)
                        if "choices" in json_data:
                            delta = json_data["choices"][0]["delta"]
                            if "content" in delta:
                                initial_text += delta["content"]
                    except json.JSONDecodeError:
                        continue

            st.success("Initial analysis completed!")

        with st.spinner("Generating predictions..."):
            analysis_text = (
                f"Based on the following analysis, provide a performance score and an infrastructure impact score, "
                f"both as percentages. Include lines that say 'Performance Score: XX%' and 'Infrastructure Impact Score: YY%' "
                f"in your response. Here's the text to analyze: {initial_text}"
            )
            analysis_response = call_ai_model_analysis(analysis_text)

            analysis_result = ""
            for line in analysis_response.iter_lines():
                if line:
                    line_content = line.decode('utf-8')
                    if line_content.startswith("data: "):
                        line_content = line_content[6:]  # Strip "data: " prefix
                    try:
                        json_data = json.loads(line_content)
                        if "choices" in json_data:
                            delta = json_data["choices"][0]["delta"]
                            if "content" in delta:
                                analysis_result += delta["content"]
                    except json.JSONDecodeError:
                        continue

            st.success("Predictions generated!")

            # Extract performance and infrastructure scores from the analysis result
            performance_score = "N/A"
            infrastructure_score = "N/A"
            for line in analysis_result.split('\n'):
                if "performance score:" in line.lower():
                    performance_score = line.split(":")[-1].strip()
                elif "infrastructure impact score:" in line.lower():
                    infrastructure_score = line.split(":")[-1].strip()

            # Prepare data for visualization
            results_data = {
                "Condition": ["Temperature", "Humidity", "Wind Speed", "UV Index", "Air Quality Index", "Precipitation", "Atmospheric Pressure"],
                "Value": [temperature, humidity, wind_speed, uv_index, air_quality_index, precipitation, atmospheric_pressure]
            }
            results_df = pd.DataFrame(results_data)

            # Display results in a table
            st.subheader("Climate Conditions Summary")
            st.table(results_df)

            # Create a radar chart for climate conditions
            fig = go.Figure(data=go.Scatterpolar(
                r=[temperature/50*100, humidity, wind_speed/2, uv_index/11*100, air_quality_index/5, precipitation/5, (atmospheric_pressure-900)/2],
                theta=results_df['Condition'],
                fill='toself'
            ))
            fig.update_layout(
                polar=dict(
                    radialaxis=dict(visible=True, range=[0, 100])
                ),
                showlegend=False
            )
            st.plotly_chart(fig)

            # Display prediction
            st.subheader("Predicted Impact on Performance and Infrastructure")
            st.markdown(initial_text.strip())

            # Display performance and infrastructure scores
            col1, col2 = st.columns(2)
            with col1:
                st.metric("Performance Score", performance_score)
            with col2:
                st.metric("Infrastructure Impact Score", infrastructure_score)

            # Display analyzed sports and infrastructure
            st.subheader("Analyzed Components")
            col1, col2, col3 = st.columns(3)
            with col1:
                st.write("**Sports:**")
                for sport in sports:
                    st.write(f"- {sport}")
            with col2:
                st.write("**Athlete Types:**")
                for athlete_type in athlete_types:
                    st.write(f"- {athlete_type}")
            with col3:
                st.write("**Infrastructure Types:**")
                for infra_type in infrastructure_types:
                    st.write(f"- {infra_type}")

            # Display raw analysis result for debugging
            with st.expander("Show Raw Analysis"):
                st.text(analysis_result)

    except ValueError as ve:
        st.error(f"Configuration error: {ve}")
    except requests.exceptions.RequestException as re:
        st.error(f"Request error: {re}")
    except Exception as e:
        st.error(f"An unexpected error occurred: {e}")