|
import streamlit as st |
|
import requests |
|
import os |
|
import json |
|
import pandas as pd |
|
import plotly.graph_objects as go |
|
|
|
|
|
def call_ai_model_initial(all_message): |
|
url = "https://api.together.xyz/v1/chat/completions" |
|
payload = { |
|
"model": "NousResearch/Nous-Hermes-2-Yi-34B", |
|
"temperature": 1.05, |
|
"top_p": 0.9, |
|
"top_k": 50, |
|
"repetition_penalty": 1, |
|
"n": 1, |
|
"messages": [{"role": "user", "content": all_message}], |
|
"stream_tokens": True, |
|
} |
|
|
|
TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY') |
|
if TOGETHER_API_KEY is None: |
|
raise ValueError("TOGETHER_API_KEY environment variable not set.") |
|
|
|
headers = { |
|
"accept": "application/json", |
|
"content-type": "application/json", |
|
"Authorization": f"Bearer {TOGETHER_API_KEY}", |
|
} |
|
|
|
response = requests.post(url, json=payload, headers=headers, stream=True) |
|
response.raise_for_status() |
|
|
|
return response |
|
|
|
|
|
def call_ai_model_analysis(analysis_text): |
|
url = "https://api.together.xyz/v1/chat/completions" |
|
payload = { |
|
"model": "NousResearch/Nous-Hermes-2-Yi-34B", |
|
"temperature": 1.05, |
|
"top_p": 0.9, |
|
"top_k": 50, |
|
"repetition_penalty": 1, |
|
"n": 1, |
|
"messages": [{"role": "user", "content": analysis_text}], |
|
"stream_tokens": True, |
|
} |
|
|
|
TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY') |
|
if TOGETHER_API_KEY is None: |
|
raise ValueError("TOGETHER_API_KEY environment variable not set.") |
|
|
|
headers = { |
|
"accept": "application/json", |
|
"content-type": "application/json", |
|
"Authorization": f"Bearer {TOGETHER_API_KEY}", |
|
} |
|
|
|
response = requests.post(url, json=payload, headers=headers, stream=True) |
|
response.raise_for_status() |
|
|
|
return response |
|
|
|
|
|
st.title("Climate Impact on Sports Performance and Infrastructure") |
|
st.write("Analyze and visualize the impact of climate conditions on sports performance and infrastructure.") |
|
|
|
|
|
temperature = st.number_input("Temperature (°C):", min_value=-50, max_value=50, value=25) |
|
humidity = st.number_input("Humidity (%):", min_value=0, max_value=100, value=50) |
|
wind_speed = st.number_input("Wind Speed (km/h):", min_value=0.0, max_value=200.0, value=15.0) |
|
uv_index = st.number_input("UV Index:", min_value=0, max_value=11, value=5) |
|
air_quality_index = st.number_input("Air Quality Index:", min_value=0, max_value=500, value=100) |
|
precipitation = st.number_input("Precipitation (mm):", min_value=0.0, max_value=500.0, value=10.0) |
|
atmospheric_pressure = st.number_input("Atmospheric Pressure (hPa):", min_value=900, max_value=1100, value=1013) |
|
|
|
|
|
sports = st.multiselect("Select sports:", ["Football", "Tennis", "Athletics", "Swimming", "Basketball", "Golf"]) |
|
athlete_types = st.multiselect("Select athlete types:", ["Professional", "Amateur", "Youth", "Senior"]) |
|
|
|
|
|
infrastructure_types = st.multiselect("Select infrastructure types:", ["Outdoor Stadium", "Indoor Arena", "Swimming Pool", "Tennis Court", "Golf Course"]) |
|
|
|
if st.button("Generate Prediction"): |
|
all_message = ( |
|
f"Assess the impact on sports performance, athletes, and infrastructure based on climate conditions: " |
|
f"Temperature {temperature}°C, Humidity {humidity}%, Wind Speed {wind_speed} km/h, UV Index {uv_index}, " |
|
f"Air Quality Index {air_quality_index}, Precipitation {precipitation} mm, Atmospheric Pressure {atmospheric_pressure} hPa. " |
|
f"Sports: {', '.join(sports)}. Athlete types: {', '.join(athlete_types)}. " |
|
f"Infrastructure types: {', '.join(infrastructure_types)}. " |
|
f"Provide a detailed analysis of how these conditions affect performance, health, and infrastructure. " |
|
f"Include specific impacts for each sport, athlete type, and infrastructure type. " |
|
f"Also, provide an overall performance score and an infrastructure impact score, both as percentages. Lastly i need you organize everything in tables, not random paragraphs and do your best to be accurate in your analysis" |
|
) |
|
|
|
try: |
|
with st.spinner("Analyzing climate conditions..."): |
|
initial_response = call_ai_model_initial(all_message) |
|
|
|
initial_text = "" |
|
for line in initial_response.iter_lines(): |
|
if line: |
|
line_content = line.decode('utf-8') |
|
if line_content.startswith("data: "): |
|
line_content = line_content[6:] |
|
try: |
|
json_data = json.loads(line_content) |
|
if "choices" in json_data: |
|
delta = json_data["choices"][0]["delta"] |
|
if "content" in delta: |
|
initial_text += delta["content"] |
|
except json.JSONDecodeError: |
|
continue |
|
|
|
st.success("Initial analysis completed!") |
|
|
|
with st.spinner("Generating predictions..."): |
|
analysis_text = ( |
|
f"Based on the following analysis, provide a performance score and an infrastructure impact score, " |
|
f"both as percentages. Include lines that say 'Performance Score: XX%' and 'Infrastructure Impact Score: YY%' " |
|
f"in your response. Here's the text to analyze: {initial_text}" |
|
) |
|
analysis_response = call_ai_model_analysis(analysis_text) |
|
|
|
analysis_result = "" |
|
for line in analysis_response.iter_lines(): |
|
if line: |
|
line_content = line.decode('utf-8') |
|
if line_content.startswith("data: "): |
|
line_content = line_content[6:] |
|
try: |
|
json_data = json.loads(line_content) |
|
if "choices" in json_data: |
|
delta = json_data["choices"][0]["delta"] |
|
if "content" in delta: |
|
analysis_result += delta["content"] |
|
except json.JSONDecodeError: |
|
continue |
|
|
|
st.success("Predictions generated!") |
|
|
|
|
|
performance_score = "N/A" |
|
infrastructure_score = "N/A" |
|
for line in analysis_result.split('\n'): |
|
if "performance score:" in line.lower(): |
|
performance_score = line.split(":")[-1].strip() |
|
elif "infrastructure impact score:" in line.lower(): |
|
infrastructure_score = line.split(":")[-1].strip() |
|
|
|
|
|
results_data = { |
|
"Condition": ["Temperature", "Humidity", "Wind Speed", "UV Index", "Air Quality Index", "Precipitation", "Atmospheric Pressure"], |
|
"Value": [temperature, humidity, wind_speed, uv_index, air_quality_index, precipitation, atmospheric_pressure] |
|
} |
|
results_df = pd.DataFrame(results_data) |
|
|
|
|
|
st.subheader("Climate Conditions Summary") |
|
st.table(results_df) |
|
|
|
|
|
fig = go.Figure(data=go.Scatterpolar( |
|
r=[temperature/50*100, humidity, wind_speed/2, uv_index/11*100, air_quality_index/5, precipitation/5, (atmospheric_pressure-900)/2], |
|
theta=results_df['Condition'], |
|
fill='toself' |
|
)) |
|
fig.update_layout( |
|
polar=dict( |
|
radialaxis=dict(visible=True, range=[0, 100]) |
|
), |
|
showlegend=False |
|
) |
|
st.plotly_chart(fig) |
|
|
|
|
|
st.subheader("Predicted Impact on Performance and Infrastructure") |
|
st.markdown(initial_text.strip()) |
|
|
|
|
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.metric("Performance Score", performance_score) |
|
with col2: |
|
st.metric("Infrastructure Impact Score", infrastructure_score) |
|
|
|
|
|
st.subheader("Analyzed Components") |
|
col1, col2, col3 = st.columns(3) |
|
with col1: |
|
st.write("**Sports:**") |
|
for sport in sports: |
|
st.write(f"- {sport}") |
|
with col2: |
|
st.write("**Athlete Types:**") |
|
for athlete_type in athlete_types: |
|
st.write(f"- {athlete_type}") |
|
with col3: |
|
st.write("**Infrastructure Types:**") |
|
for infra_type in infrastructure_types: |
|
st.write(f"- {infra_type}") |
|
|
|
|
|
with st.expander("Show Raw Analysis"): |
|
st.text(analysis_result) |
|
|
|
except ValueError as ve: |
|
st.error(f"Configuration error: {ve}") |
|
except requests.exceptions.RequestException as re: |
|
st.error(f"Request error: {re}") |
|
except Exception as e: |
|
st.error(f"An unexpected error occurred: {e}") |