realzdlegend's picture
Duplicate from TencentARC/Caption-Anything
3b8cdb2
import os
import argparse
import pdb
import time
from PIL import Image
import cv2
import numpy as np
from caption_anything.captioner import build_captioner, BaseCaptioner
from caption_anything.segmenter import build_segmenter
from caption_anything.text_refiner import build_text_refiner
class CaptionAnything:
def __init__(self, args, api_key="", captioner=None, segmenter=None, text_refiner=None):
self.args = args
self.captioner = build_captioner(args.captioner, args.device, args) if captioner is None else captioner
self.segmenter = build_segmenter(args.segmenter, args.device, args) if segmenter is None else segmenter
self.text_refiner = None
if not args.disable_gpt:
if text_refiner is not None:
self.text_refiner = text_refiner
else:
self.init_refiner(api_key)
@property
def image_embedding(self):
return self.segmenter.image_embedding
@image_embedding.setter
def image_embedding(self, image_embedding):
self.segmenter.image_embedding = image_embedding
@property
def original_size(self):
return self.segmenter.predictor.original_size
@original_size.setter
def original_size(self, original_size):
self.segmenter.predictor.original_size = original_size
@property
def input_size(self):
return self.segmenter.predictor.input_size
@input_size.setter
def input_size(self, input_size):
self.segmenter.predictor.input_size = input_size
def setup(self, image_embedding, original_size, input_size, is_image_set):
self.image_embedding = image_embedding
self.original_size = original_size
self.input_size = input_size
self.segmenter.predictor.is_image_set = is_image_set
def init_refiner(self, api_key):
try:
self.text_refiner = build_text_refiner(self.args.text_refiner, self.args.device, self.args, api_key)
self.text_refiner.llm('hi') # test
except:
self.text_refiner = None
print('OpenAI GPT is not available')
def inference(self, image, prompt, controls, disable_gpt=False, enable_wiki=False):
# TODO: Add support to multiple seg masks.
# segment with prompt
print("CA prompt: ", prompt, "CA controls", controls)
seg_mask = self.segmenter.inference(image, prompt)[0, ...]
if self.args.enable_morphologyex:
seg_mask = 255 * seg_mask.astype(np.uint8)
seg_mask = np.stack([seg_mask, seg_mask, seg_mask], axis=-1)
seg_mask = cv2.morphologyEx(seg_mask, cv2.MORPH_OPEN, kernel=np.ones((6, 6), np.uint8))
seg_mask = cv2.morphologyEx(seg_mask, cv2.MORPH_CLOSE, kernel=np.ones((6, 6), np.uint8))
seg_mask = seg_mask[:, :, 0] > 0
mask_save_path = f'result/mask_{time.time()}.png'
if not os.path.exists(os.path.dirname(mask_save_path)):
os.makedirs(os.path.dirname(mask_save_path))
seg_mask_img = Image.fromarray(seg_mask.astype('int') * 255.)
if seg_mask_img.mode != 'RGB':
seg_mask_img = seg_mask_img.convert('RGB')
seg_mask_img.save(mask_save_path)
print('seg_mask path: ', mask_save_path)
print("seg_mask.shape: ", seg_mask.shape)
# captioning with mask
if self.args.enable_reduce_tokens:
caption, crop_save_path = self.captioner. \
inference_with_reduced_tokens(image, seg_mask,
crop_mode=self.args.seg_crop_mode,
filter=self.args.clip_filter,
disable_regular_box=self.args.disable_regular_box)
else:
caption, crop_save_path = self.captioner. \
inference_seg(image, seg_mask, crop_mode=self.args.seg_crop_mode,
filter=self.args.clip_filter,
disable_regular_box=self.args.disable_regular_box)
# refining with TextRefiner
context_captions = []
if self.args.context_captions:
context_captions.append(self.captioner.inference(image))
if not disable_gpt and self.text_refiner is not None:
refined_caption = self.text_refiner.inference(query=caption, controls=controls, context=context_captions,
enable_wiki=enable_wiki)
else:
refined_caption = {'raw_caption': caption}
out = {'generated_captions': refined_caption,
'crop_save_path': crop_save_path,
'mask_save_path': mask_save_path,
'mask': seg_mask_img,
'context_captions': context_captions}
return out
if __name__ == "__main__":
from caption_anything.utils.parser import parse_augment
args = parse_augment()
# image_path = 'test_images/img3.jpg'
image_path = 'test_images/img1.jpg'
prompts = [
{
"prompt_type": ["click"],
"input_point": [[500, 300], [200, 500]],
"input_label": [1, 0],
"multimask_output": "True",
},
{
"prompt_type": ["click"],
"input_point": [[300, 800]],
"input_label": [1],
"multimask_output": "True",
}
]
controls = {
"length": "30",
"sentiment": "positive",
# "imagination": "True",
"imagination": "False",
"language": "English",
}
model = CaptionAnything(args, os.environ['OPENAI_API_KEY'])
for prompt in prompts:
print('*' * 30)
print('Image path: ', image_path)
image = Image.open(image_path)
print(image)
print('Visual controls (SAM prompt):\n', prompt)
print('Language controls:\n', controls)
out = model.inference(image_path, prompt, controls)