|
import gradio as gr |
|
import cv2 |
|
import requests |
|
import os |
|
import torch |
|
import numpy as np |
|
from ultralytics import YOLO |
|
|
|
model = torch.hub.load('ultralytics/yolov5', 'hi', pretrained=True) |
|
|
|
area = [(48,430), (18, 515), (407,485), (750,425), (690,370)] |
|
total_space = 12 |
|
count=0 |
|
|
|
def show_preds_video(): |
|
cap = cv2.VideoCapture('V111.mp4') |
|
count=0 |
|
while(cap.isOpened()): |
|
ret, frame = cap.read() |
|
if not ret: |
|
break |
|
count += 1 |
|
if count % 2 != 0: |
|
continue |
|
|
|
frame=cv2.resize(frame,(1020,600)) |
|
frame_copy = frame.copy() |
|
Vehicle_cnt = 0 |
|
|
|
results=model(frame) |
|
for index, row in results.pandas().xyxy[0].iterrows(): |
|
x1 = int(row['xmin']) |
|
y1 = int(row['ymin']) |
|
x2 = int(row['xmax']) |
|
y2 = int(row['ymax']) |
|
d=(row['name']) |
|
|
|
cx=int(x1+x2)//2 |
|
cy=int(y1+y2)//2 |
|
|
|
if ('car' or 'truck') in d: |
|
results = cv2.pointPolygonTest(np.array(area, np.int32), ((cx,cy)), False) |
|
if results >0: |
|
cv2.rectangle(frame_copy,(x1,y1),(x2,y2),(0,0,255),2) |
|
cv2.putText(frame_copy,str(d),(x1,y1),cv2.FONT_HERSHEY_PLAIN,2,(255,255,0),2) |
|
Vehicle_cnt += 1 |
|
|
|
|
|
|
|
free_space = total_space - Vehicle_cnt |
|
cv2.putText(frame_copy, ("Free space: " + str(free_space)), (50,50) ,cv2.FONT_HERSHEY_PLAIN,2,(0,255,0),2) |
|
|
|
cv2.putText(frame_copy, str(str("vehicles: ")+ str(Vehicle_cnt) ), (50,85) ,cv2.FONT_HERSHEY_PLAIN,2,(0,255,0),2) |
|
|
|
cv2.polylines(frame_copy, [np.array(area, np.int32)], True, (0,255,0), 2) |
|
|
|
yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB) |
|
|
|
|
|
inputs_video = [ |
|
|
|
|
|
] |
|
outputs_video = [ |
|
gr.components.Image(type="numpy", label="Output Image"), |
|
] |
|
interface_video = gr.Interface( |
|
fn=show_preds_video, |
|
inputs=inputs_video, |
|
outputs=outputs_video, |
|
title="Parking counter", |
|
description="Click submit !!!'", |
|
|
|
cache_examples=False, |
|
) |
|
|
|
gr.TabbedInterface( |
|
[interface_video], |
|
tab_names=['Video inference'] |
|
).queue().launch() |