Spaces:
Sleeping
Sleeping
File size: 3,246 Bytes
ebba9fe a229104 82be2c2 4efce51 8bd3596 4efce51 8bd3596 ebba9fe 7ee39bb 2d33e4f 4efce51 ebba9fe 4efce51 ebba9fe 4efce51 ebba9fe 4efce51 2f6eb5e ebba9fe 4efce51 2f6eb5e 4efce51 ebba9fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
import gradio as gr
from alignment import (
DataArguments,
ModelArguments,
apply_chat_template,
get_datasets,
get_tokenizer,
)
def reformat(dataset_name, train_split, test_split, model_name, upload_name, token):
data_args = DataArguments(chat_template=None, dataset_mixer={dataset_name: 1.0}, dataset_splits=[train_split, test_split], max_train_samples=None, max_eval_samples=None, preprocessing_num_workers=12, truncation_side=None)
model_args = ModelArguments(base_model_revision=None, model_name_or_path=model_name, model_revision='main', model_code_revision=None, torch_dtype='auto', trust_remote_code=True, use_flash_attention_2=True, use_peft=True, lora_r=64, lora_alpha=16, lora_dropout=0.1, lora_target_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj'], lora_modules_to_save=None, load_in_8bit=False, load_in_4bit=True, bnb_4bit_quant_type='nf4', use_bnb_nested_quant=False)
###############
# Load datasets
###############
raw_datasets = get_datasets(data_args, splits=data_args.dataset_splits)
output = f"Dataset successfully formatted and pushed! Dataset and their proportions: {[split + ' : ' + str(dset.num_rows) for split, dset in raw_datasets.items()]}"
################
# Load tokenizer
################
tokenizer = get_tokenizer(model_args, data_args)
#####################
# Apply chat template
#####################
raw_datasets = raw_datasets.map(apply_chat_template, fn_kwargs={"tokenizer": tokenizer, "task": "sft"})
train_dataset = raw_datasets["train"]
eval_dataset = raw_datasets["test"]
raw_datasets.push_to_hub(upload_name, token=token)
return gr.Markdown(
value=output
)
with gr.Blocks() as demo:
gr.Markdown("## Dataset Chat Template")
gr.Markdown("Format Datasets like HuggingFaceH4/no_robots to be AutoTrain compatible.")
token = gr.Textbox(
label="Hugging Face Write Token",
value="",
lines=1,
max_lines=1,
interactive=True,
type="password",
)
dataset_name = gr.Textbox(
label="Dataset Name (e.g. HuggingFaceH4/no_robots)",
value="HuggingFaceH4/no_robots",
lines=1,
max_lines=1,
interactive=True,
)
train_split = gr.Textbox(
label="Train Split Name (e.g. train_sft)",
value="train_sft",
lines=1,
max_lines=1,
interactive=True,
)
test_split = gr.Textbox(
label="Test Split Name (e.g. test_sft)",
value="test_sft",
lines=1,
max_lines=1,
interactive=True,
)
model_name = gr.Textbox(
label="Model Name (e.g. mistralai/Mistral-7B-v0.1)",
value="mistralai/Mistral-7B-v0.1",
lines=1,
max_lines=1,
interactive=True,
)
upload_name = gr.Textbox(
label="New Dataset Name (e.g. rishiraj/no_robots)",
value="",
lines=1,
max_lines=1,
interactive=True,
)
submit = gr.Button(value="Apply Template & Push")
op = gr.Markdown()
submit.click(reformat, inputs=[dataset_name, train_split, test_split, model_name, upload_name, token], outputs=[op])
if __name__ == "__main__":
demo.launch() |