Spaces:
Sleeping
Sleeping
### imports and class names setup ### | |
import gradio as gr | |
import os | |
import torch | |
from model import create_effnetb2_model | |
from timeit import default_timer as timer | |
from typing import Tuple, Dict | |
class_names = ["pizza", "steak", "sushi"] | |
### model and transforms prepration ### | |
effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=3, | |
seed=29) | |
# loading the saved weights | |
effnetb2.load_state_dict( | |
torch.load( | |
f="pretrained_effnetb2_feature_extractor.pth", | |
map_location=torch.device("cpu") # loading the model to cpu | |
) | |
) | |
### predict function ### | |
def predict(img) -> Tuple[Dict, float]: | |
# start a timer | |
start_time = timer() | |
# transforming the input image | |
img = effnetb2_transforms(img).unsqueeze(0) | |
# putting the model into eval mode & making prediction | |
effnetb2.eval() | |
with torch.inference_mode(): | |
# passing transformed img through the model and turn pred logits into probs | |
pred_probs = torch.softmax(effnetb2(img), dim=1) | |
# creating a prediction label & prediction probability dictionary | |
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} | |
# calculate pred time | |
end_time = timer() | |
pred_time = round(end_time-start_time, 4) | |
# return pred dict and pred time | |
return pred_labels_and_probs, pred_time | |
### gradio app ### | |
# creating title, description and article | |
title = "FoodVision Mini" | |
description = "An EfficientNetB2 feature extractor computer vision model to classify images as pizza, steak or sushi." | |
# creating an example list | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
# creating the gradio demo | |
demo = gr.Interface(fn=predict, # maps inputs to outputs | |
inputs=gr.Image(type="pil"), | |
outputs=[gr.Label(num_top_classes=3, label="Predictions"), | |
gr.Number(label="Prediction Time (s)")], | |
examples=example_list, | |
title=title, | |
description=description) | |
# launching the demo | |
demo.launch(debug=False) # don't need `share=True` in HuggingFace spaces | |