Spaces:
Running
Running
import os | |
import torch | |
from torch.utils.data import Dataset, DataLoader | |
import pandas as pd | |
import numpy as np | |
import joblib | |
import gradio as gr | |
import plotly.graph_objects as go | |
from io import BytesIO | |
from PIL import Image | |
from torchvision import transforms, models | |
from sklearn.preprocessing import LabelEncoder, MinMaxScaler | |
from gradio import Interface, Image, Label, HTML | |
from huggingface_hub import snapshot_download | |
import torch_xla.utils.serialization as xser | |
import s2sphere | |
import folium | |
token = os.environ.get("token") | |
local_dir = snapshot_download( | |
repo_id="robocan/GeoG_23k", | |
repo_type="model", | |
local_dir="SVD", | |
token=token | |
) | |
device = 'cpu' | |
le = LabelEncoder() | |
le = joblib.load("SVD/le.gz") | |
len_classes = len(le.classes_) + 1 | |
class ModelPre(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.embedding = torch.nn.Sequential( | |
*list(models.convnext_small(weights=models.ConvNeXt_Small_Weights.IMAGENET1K_V1).children())[:-1], | |
torch.nn.Flatten(), | |
torch.nn.Linear(in_features=768, out_features=1024), | |
torch.nn.ReLU(), | |
torch.nn.Linear(in_features=1024, out_features=1024), | |
torch.nn.ReLU(), | |
torch.nn.Linear(in_features=1024, out_features=len_classes), | |
) | |
def forward(self, data): | |
return self.embedding(data) | |
# Load the pretrained model | |
model = ModelPre() | |
model_w = xser.load("SVD/GeoG.pth") | |
model.load_state_dict(model_w['model']) | |
cmp = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Resize(size=(224, 224), antialias=True), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
]) | |
def predict(input_img): | |
with torch.inference_mode(): | |
img = cmp(input_img).unsqueeze(0) | |
res = model(img.to(device)) | |
probabilities = torch.softmax(res, dim=1).cpu().numpy().flatten() | |
top_10_indices = np.argsort(probabilities)[-10:][::-1] | |
top_10_probabilities = probabilities[top_10_indices] | |
top_10_predictions = le.inverse_transform(top_10_indices) | |
results = {top_10_predictions[i]: float(top_10_probabilities[i]) for i in range(10)} | |
return results, top_10_predictions | |
# Function to get S2 cell polygon | |
def get_s2_cell_polygon(cell_id): | |
cell = s2sphere.Cell(s2sphere.CellId(cell_id)) | |
vertices = [] | |
for i in range(4): | |
vertex = s2sphere.LatLng.from_point(cell.get_vertex(i)) | |
vertices.append((vertex.lat().degrees, vertex.lng().degrees)) | |
vertices.append(vertices[0]) # Close the polygon | |
return vertices | |
def create_map_figure(predictions, cell_ids, selected_index=None): | |
fig = go.Figure() | |
# Assign colors based on rank | |
colors = ['rgba(0, 255, 0, 0.2)'] * 3 + ['rgba(255, 255, 0, 0.2)'] * 7 | |
zoom_level = 1 | |
center_lat = None | |
center_lon = None | |
for rank, cell_id in enumerate(cell_ids): | |
cell_id = int(float(cell_id)) | |
polygon = get_s2_cell_polygon(cell_id) | |
lats, lons = zip(*polygon) | |
color = colors[rank] | |
fig.add_trace(go.Scattermapbox( | |
lat=lats, | |
lon=lons, | |
mode='lines', | |
fill='toself', | |
fillcolor=color, | |
line=dict(color='blue'), | |
name=f'Prediction {rank + 1}', # Updated label | |
)) | |
# Set zoom based on the selected index | |
if selected_index is not None and rank == selected_index: | |
zoom_level = 10 # Adjust zoom level | |
center_lat = np.mean(lats) | |
center_lon = np.mean(lons) | |
fig.update_layout( | |
mapbox_style="open-street-map", | |
hovermode='closest', | |
mapbox=dict( | |
bearing=0, | |
center=go.layout.mapbox.Center( | |
lat=center_lat if center_lat else np.mean(lats), | |
lon=center_lon if center_lon else np.mean(lons) | |
), | |
pitch=0, | |
zoom=zoom_level # Zoom in if an index is selected | |
), | |
) | |
return fig | |
# Create label output function | |
def create_label_output(predictions): | |
results, cell_ids = predictions | |
fig = create_map_figure(results, cell_ids) | |
return fig | |
# Update the predict_and_plot function to handle zoom on selection | |
def predict_and_plot(input_img, selected_prediction): | |
predictions = predict(input_img) | |
return create_map_figure(predictions, predictions[1], selected_index=selected_prediction) | |
# Gradio app definition | |
with gr.Blocks() as gradio_app: | |
with gr.Column(): | |
input_image = gr.Image(label="Upload an Image", type="pil") | |
selected_prediction = gr.Dropdown(choices=[f"Prediction {i+1}" for i in range(10)], label="Select Prediction to Zoom") | |
output_map = gr.Plot(label="Predicted Location on Map") | |
btn_predict = gr.Button("Predict") | |
# Update click function to include selected prediction | |
btn_predict.click(predict_and_plot, inputs=[input_image, selected_prediction], outputs=output_map) | |
examples = ["GB.PNG", "IT.PNG", "NL.PNG", "NZ.PNG"] | |
gr.Examples(examples=examples, inputs=input_image) | |
gradio_app.launch() |