Spaces:
Build error
Build error
import os | |
import gradio as gr | |
import pandas as pd | |
import numpy as np | |
import chromadb | |
from chromadb.config import Settings | |
from io import StringIO | |
from sentence_transformers import SentenceTransformer | |
import plotly.express as px | |
from sklearn.manifold import TSNE | |
# Constants for Model Configuration | |
MODEL_CONFIG = { | |
"gpt-4": { | |
"endpoint": "https://roger-m38jr9pd-eastus2.openai.azure.com/openai/deployments/gpt-4/chat/completions?api-version=2024-08-01-preview", | |
"api_key": os.getenv("GPT4_API_KEY") | |
}, | |
"gpt-4o": { | |
"endpoint": "https://roger-m38jr9pd-eastus2.openai.azure.com/openai/deployments/gpt-4o/chat/completions?api-version=2024-08-01-preview", | |
"api_key": os.getenv("GPT4O_API_KEY") | |
}, | |
"gpt-35-turbo": { | |
"endpoint": "https://rogerkoranteng.openai.azure.com/openai/deployments/gpt-35-turbo/chat/completions?api-version=2024-08-01-preview", | |
"api_key": os.getenv("GPT35_TURBO_API_KEY") | |
}, | |
"gpt-4-32k": { | |
"endpoint": "https://roger-m38orjxq-australiaeast.openai.azure.com/openai/deployments/gpt-4-32k/chat/completions?api-version=2024-08-01-preview", | |
"api_key": os.getenv("GPT4_32K_API_KEY") | |
} | |
} | |
# Initialize Chroma client with DuckDB and Parquet for persistence | |
chroma_client = chromadb.Client() | |
# Functions for Data Processing and Embedding | |
def process_csv_text(temp_file): | |
"""Process the uploaded CSV and return the dataframe and column options.""" | |
if isinstance(temp_file, str): | |
df = pd.read_csv(StringIO(temp_file)) | |
else: | |
df = pd.read_csv(temp_file.name, header='infer', sep=',') | |
return df, gr.Dropdown.update(choices=list(df.columns)) | |
def insert_or_update_chroma(col, table, model_name, similarity_metric): | |
"""Insert or update embeddings in ChromaDB.""" | |
try: | |
collection = chroma_client.create_collection( | |
name="my_collection", | |
embedding_function=SentenceTransformer(model_name), | |
metadata={"hnsw:space": similarity_metric} | |
) | |
except Exception: | |
print("Collection exists, deleting it") | |
chroma_client.delete_collection(name='my_collection') | |
collection = chroma_client.create_collection( | |
name="my_collection", | |
embedding_function=SentenceTransformer(model_name), | |
metadata={"hnsw:space": similarity_metric} | |
) | |
if collection: | |
try: | |
collection.add( | |
documents=list(table[col]), | |
metadatas=[{"source": i} for i in range(len(table))], | |
ids=[str(i + 1) for i in range(len(table))] | |
) | |
return "Embedding calculations and insertions successful" | |
except Exception as e: | |
return f"Error in embedding calculations: {e}" | |
def show_fig(): | |
"""Show t-SNE 2D plot for embeddings.""" | |
collection = chroma_client.get_collection(name="my_collection") | |
embeddings = collection.get(include=['embeddings', 'documents']) | |
df = pd.DataFrame({ | |
'text': embeddings['documents'], | |
'embedding': embeddings['embeddings'] | |
}) | |
embeddings_np = np.array(df['embedding'].tolist()) | |
tsne = TSNE(n_components=2, random_state=42) | |
transformed = tsne.fit_transform(embeddings_np) | |
df['tsne_x'] = transformed[:, 0] | |
df['tsne_y'] = transformed[:, 1] | |
fig = px.scatter(df, x='tsne_x', y='tsne_y', hover_name='text') | |
return fig, transformed | |
def show_test_string_fig(test_string, tsne, model_name, similarity_metric): | |
"""Show t-SNE plot with test string to compare embeddings.""" | |
collection = chroma_client.get_collection(name="my_collection", | |
embedding_function=SentenceTransformer(model_name)) | |
collection.add( | |
documents=[test_string], | |
metadatas=[{"source": 'test'}], | |
ids=['test_sample'] | |
) | |
embeddings = collection.get(include=['embeddings', 'documents']) | |
df = pd.DataFrame({ | |
'text': embeddings['documents'], | |
'embedding': embeddings['embeddings'], | |
'set': ['orig' if document != test_string else 'test_string' for document in embeddings["documents"]] | |
}) | |
embeddings_np = np.array(df['embedding'].tolist()) | |
transformed = tsne.transform(embeddings_np) | |
df['tsne_x'] = transformed[:, 0] | |
df['tsne_y'] = transformed[:, 1] | |
fig = px.scatter(df, x='tsne_x', y='tsne_y', hover_name='text', color='set') | |
return fig, tsne | |
def ask_gpt(message, messages_history, embedding_model, system_prompt, temperature, max_tokens, chatgpt_model): | |
"""Interacts with the OpenAI API using Azure endpoint.""" | |
if len(messages_history) < 1: | |
messages_history = [{"role": "system", "content": system_prompt}] | |
model_info = MODEL_CONFIG[chatgpt_model] | |
headers = {"Content-Type": "application/json", "api-key": model_info["api_key"]} | |
message = retrieve_similar(message, embedding_model) | |
messages_history += [{"role": "user", "content": message}] | |
response = openai.ChatCompletion.create( | |
model=chatgpt_model, | |
messages=messages_history, | |
temperature=temperature, | |
max_tokens=max_tokens | |
) | |
return response['choices'][0]['message']['content'], messages_history | |
def retrieve_similar(prompt, embedding_model): | |
"""Retrieve similar documents from ChromaDB to enhance context.""" | |
# Initialize SentenceTransformer correctly | |
embedding_function = SentenceTransformer(embedding_model) | |
collection = chroma_client.get_collection( | |
name="my_collection", | |
embedding_function=embedding_function | |
) | |
results = collection.query(query_texts=prompt, n_results=10) | |
additional_context = '' | |
for i, document in enumerate(results['documents'][0]): | |
additional_context += f'{i + 1}. {document}\n' | |
return additional_context + f'Question: {prompt}' | |
# Gradio Interface Setup | |
def build_gradio_ui(): | |
"""Setup the complete Gradio UI.""" | |
with gr.Blocks() as demo: | |
# Tab 1: Upload CSV and Display Data | |
with gr.Tab("Upload data"): | |
upload_button = gr.File(label="Upload CSV", file_types=['.csv'], file_count="single") | |
table = gr.Dataframe(type="pandas", interactive=True) | |
cols = gr.Dropdown(choices=[], label='Dataframe columns') | |
upload_button.change(fn=process_csv_text, inputs=upload_button, outputs=[table, cols]) | |
# Tab 2: ChromaDB, Embeddings, and Plotting | |
with gr.Tab("ChromaDB and Embeddings"): | |
cols = gr.Dropdown(choices=[], label='Dataframe columns') | |
embedding_model = gr.Dropdown(value='all-MiniLM-L6-v2', | |
choices=['all-MiniLM-L6-v2', 'intfloat/e5-small-v2', 'intfloat/e5-base-v2', | |
'intfloat/e5-large-v2', 'paraphrase-multilingual-MiniLM-L12-v2'], | |
label='Embedding Model') | |
similarity_metric = gr.Dropdown(value='cosine', choices=['cosine', 'l2'], label='Similarity Metric') | |
embedding_button = gr.Button(value="Insert or Update Embeddings") | |
text = gr.Textbox(label='Process Status') | |
show_embeddings_button = gr.Button(value="Show Embeddings") | |
embeddings_plot = gr.Plot() | |
tsne = gr.State(value=None) # Using gr.State for intermediate results (tsne) | |
test_string = gr.Textbox(label='Test String') | |
calculate_2d_repr_button = gr.Button(value="Calculate 2D Representation") | |
embeddings_plot_with_text_string = gr.Plot() | |
embedding_button.click(insert_or_update_chroma, inputs=[cols, table, embedding_model, similarity_metric], outputs=[text]) | |
show_embeddings_button.click(show_fig, inputs=[], outputs=[embeddings_plot, tsne]) | |
calculate_2d_repr_button.click(show_test_string_fig, inputs=[test_string, tsne, embedding_model, similarity_metric], outputs=[embeddings_plot_with_text_string, tsne]) | |
# Tab 3: Chat with GPT | |
with gr.Tab("Chat"): | |
system_prompt = gr.Textbox(value="You are a helpful assistant.", label="System Message") | |
chatgpt_model = gr.Dropdown(value="gpt-4", choices=list(MODEL_CONFIG.keys()), label="ChatGPT Model") | |
temperature = gr.Slider(minimum=0, maximum=2, step=0.1, value=0.7, label="Temperature") | |
max_tokens = gr.Slider(minimum=50, maximum=2000, step=50, value=300, label="Max Tokens") | |
chatbot = gr.Chatbot(label="ChatGPT Chat") | |
clear_button = gr.Button("Clear Chat History") | |
msg = gr.Textbox() | |
msg_log = gr.Textbox("Message history", label="History") | |
# Replacing `.submit()` with `.change()` to trigger callback when user enters a message | |
msg.submit(fn=ask_gpt, inputs=[msg, chatbot, system_prompt, embedding_model, temperature, max_tokens, chatgpt_model], outputs=[msg, chatbot]) | |
clear_button.click(fn=lambda: None, inputs=None, outputs=[chatbot]) | |
return demo | |
# Launch the Gradio interface | |
demo = build_gradio_ui() | |
demo.launch(server_name="0.0.0.0", server_port=8080, share=True) | |
# Launch the Gradio interf | |