root-sajjan's picture
perceptron tagger downloaded
2e95501 verified
raw
history blame
6.74 kB
from huggingface_hub import InferenceClient
import nltk
import re
import requests
import os
api_key = os.getenv("HF_KEY")
nltk.download('punkt')
nltk.download('punkt_tab')
nltk.download('averaged_perceptron_tagger')
nltk.download('averaged_perceptron_tagger_eng')
client = InferenceClient(api_key=api_key)
'''
def extract_product_info(text):
print(f'Extract function called!')
# Initialize result dictionary
result = {"brand": None, "model": None, "description": None, "price": None}
# Extract price separately using regex (to avoid confusion with brand name)
price_match = re.search(r'\$\s?\d{1,3}(?:,\d{3})*(?:\.\d{2})?', text)
print(f'price_match:{price_match}')
if price_match:
result["price"] = price_match.group().replace("$", "").replace(",", "").strip()
# Remove the price part from the text to prevent it from being included in the brand/model extraction
text = text.replace(price_match.group(), "").strip()
print(f'text:{text}')
# Tokenize the remaining text and tag parts of speech
tokens = nltk.word_tokenize(text)
print(f'tokens are:{tokens}')
pos_tags = nltk.pos_tag(tokens)
print(tokens, pos_tags)
# Extract brand and model (Proper Nouns + Alphanumeric patterns)
brand_parts = []
model_parts = []
description_parts = []
# First part: Extract brand and model info
for word, tag in pos_tags:
if tag == 'NNP' or re.match(r'[A-Za-z0-9-]+', word):
if len(brand_parts) == 0: # Assume the first proper noun is the brand
brand_parts.append(word)
else: # Model number tends to follow the brand
model_parts.append(word)
else:
description_parts.append(word)
# Assign brand and model to result dictionary
if brand_parts:
result["brand"] = " ".join(brand_parts)
if model_parts:
result["model"] = " ".join(model_parts)
# Combine the remaining parts as description
result["description"] = " ".join(description_parts)
print(f'extract function returned:\n{result}')
return result
'''
def extract_product_info(text):
print(f"Extract function called with input: {text}")
# Initialize result dictionary
result = {"brand": None, "model": None, "description": None, "price": None}
try:
# Extract price using regex
price_match = re.search(r'\$\s?\d{1,3}(?:,\d{3})*(?:\.\d{2})?', text)
print(f"Price match: {price_match}")
if price_match:
result["price"] = price_match.group().replace("$", "").replace(",", "").strip()
# Remove the price part from the text to prevent interference
text = text.replace(price_match.group(), "").strip()
print(f"Text after removing price: {text}")
# Tokenize the remaining text
try:
tokens = nltk.word_tokenize(text)
print(f"Tokens: {tokens}")
except Exception as e:
print(f"Error during tokenization: {e}")
# Fall back to a simple split if tokenization fails
tokens = text.split()
print(f"Fallback tokens: {tokens}")
# POS tagging
try:
pos_tags = nltk.pos_tag(tokens)
print(f"POS Tags: {pos_tags}")
except Exception as e:
print(f"Error during POS tagging: {e}")
# If POS tagging fails, create dummy tags
pos_tags = [(word, "NN") for word in tokens]
print(f"Fallback POS Tags: {pos_tags}")
# Extract brand, model, and description
brand_parts = []
model_parts = []
description_parts = []
for word, tag in pos_tags:
if tag == 'NNP' or re.match(r'[A-Za-z0-9-]+', word):
if len(brand_parts) == 0: # Assume the first proper noun is the brand
brand_parts.append(word)
else: # Model number tends to follow the brand
model_parts.append(word)
else:
description_parts.append(word)
# Assign values to the result dictionary
if brand_parts:
result["brand"] = " ".join(brand_parts)
if model_parts:
result["model"] = " ".join(model_parts)
if description_parts:
result["description"] = " ".join(description_parts)
print(f"Extract function returned: {result}")
except Exception as e:
print(f"Unexpected error: {e}")
# Return a fallback result in case of a critical error
result["description"] = text
print(f"Fallback result: {result}")
return result
def extract_info(text):
API_URL = "https://api-inference.huggingface.co/models/google/flan-t5-large"
headers = {"Authorization": f"Bearer {api_key}"}
payload = {"inputs": f"From the given text, extract brand name, model number, description about it, and its average price in today's market. Give me back a python dictionary with keys as brand_name, model_number, desc, price. The text is {text}.",}
response = requests.post(API_URL, headers=headers, json=payload)
print('GOOGLEE LLM OUTPUTTTTTTT\n\n',response )
output = response.json()
print(output)
def get_name(url, object):
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": f"Is this a {object}?. Can you guess what it is and give me the closest brand it resembles to? or a model number? And give me its average price in today's market in USD. In output, give me its normal name, model name, model number and price. separated by commas. No description is needed."
},
{
"type": "image_url",
"image_url": {
"url": url
}
}
]
}
]
completion = client.chat.completions.create(
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
messages=messages,
max_tokens=500
)
print(f'\n\nNow output of LLM:\n')
llm_result = completion.choices[0].message['content']
print(llm_result)
# print(f'\n\nThat is the output')
print(f"Extracting from the output now, function calling")
result = extract_product_info(llm_result)
print(f'\n\nResult brand and price:{result}')
print(f'\n\nThat is the output')
# result2 = extract_info(llm_result)
# print(f'\n\nFrom Google llm:{result2}')
return result
# url = "https://i.ibb.co/mNYvqDL/crop_39.jpg"
# object="fridge"
# get_name(url, object)