rosenyu's picture
Upload 529 files
165ee00 verified
from __future__ import annotations
import itertools
import time
import yaml
from contextlib import nullcontext
from tqdm import tqdm
import torch
from torch import nn
from torch.cuda.amp import autocast, GradScaler
from . import utils
from .priors import prior
from . import priors
from .transformer import TransformerModel
from .bar_distribution import BarDistribution, FullSupportBarDistribution, get_bucket_limits, get_custom_bar_dist
from .utils import get_cosine_schedule_with_warmup, get_openai_lr, StoreDictKeyPair, get_weighted_single_eval_pos_sampler, get_uniform_single_eval_pos_sampler
from . import positional_encodings
from .utils import init_dist
class Losses():
gaussian = nn.GaussianNLLLoss(full=True, reduction='none')
mse = nn.MSELoss(reduction='none')
ce = lambda num_classes: nn.CrossEntropyLoss(reduction='none', weight=torch.ones(num_classes))
bce = nn.BCEWithLogitsLoss(reduction='none')
get_BarDistribution = BarDistribution
def train(priordataloader_class_or_get_batch: prior.PriorDataLoader | callable, criterion, encoder_generator, emsize=200, nhid=200, nlayers=6, nhead=2, dropout=0.0,
epochs=10, steps_per_epoch=100, batch_size=200, seq_len=10, lr=None, weight_decay=0.0, warmup_epochs=10, input_normalization=False,
y_encoder_generator=None, pos_encoder_generator=None, decoder_dict={}, extra_prior_kwargs_dict={}, scheduler=get_cosine_schedule_with_warmup,
load_weights_from_this_state_dict=None, validation_period=10, single_eval_pos_gen=None, gpu_device='cuda:0',
aggregate_k_gradients=1, verbose=True, style_encoder_generator=None, epoch_callback=None, step_callback=None, continue_model=None,
initializer=None, initialize_with_model=None, train_mixed_precision=False, efficient_eval_masking=True, border_decoder=None
, num_global_att_tokens=0, progress_bar=False, **model_extra_args):
device = gpu_device if torch.cuda.is_available() else 'cpu:0'
print(f'Using {device} device')
using_dist, rank, device = init_dist(device)
single_eval_pos_gen = single_eval_pos_gen if callable(single_eval_pos_gen) else lambda: single_eval_pos_gen
if not isinstance(priordataloader_class_or_get_batch, prior.PriorDataLoader):
priordataloader_class = priors.utils.get_batch_to_dataloader(priordataloader_class_or_get_batch)
else:
priordataloader_class = priordataloader_class_or_get_batch
def eval_pos_seq_len_sampler():
single_eval_pos = single_eval_pos_gen()
return single_eval_pos, seq_len
dl = priordataloader_class(num_steps=steps_per_epoch,
batch_size=batch_size,
eval_pos_seq_len_sampler=eval_pos_seq_len_sampler,
seq_len_maximum=seq_len,
device=device,
**extra_prior_kwargs_dict)
test_batch: prior.Batch = dl.get_test_batch()
style_def = test_batch.style
print(f'Style definition of first 3 examples: {style_def[:3] if style_def is not None else None}')
style_encoder = style_encoder_generator(style_def.shape[1], emsize) if (style_def is not None) else None
pos_encoder = (pos_encoder_generator or positional_encodings.NoPositionalEncoding)(emsize, seq_len * 2)
if isinstance(criterion, nn.GaussianNLLLoss):
n_out = 2
elif isinstance(criterion, BarDistribution) or "BarDistribution" in criterion.__class__.__name__: # TODO remove this fix (only for dev)
n_out = criterion.num_bars
elif isinstance(criterion, nn.CrossEntropyLoss):
n_out = criterion.weight.shape[0]
else:
n_out = 1
#border_decoder = None if border_decoder is None else border_decoder(emsize, criterion.num_bars + 1).to(device)
if continue_model:
model = continue_model
else:
decoder_dict = decoder_dict if decoder_dict else {'standard': (None, n_out)}
decoder_once_dict = {}
if test_batch.mean_prediction is not None:
decoder_once_dict['mean_prediction'] = decoder_dict['standard']
encoder = encoder_generator(dl.num_features, emsize)
model = TransformerModel(encoder=encoder
, nhead=nhead
, ninp=emsize
, nhid=nhid
, nlayers=nlayers
, dropout=dropout
, style_encoder=style_encoder
, y_encoder=y_encoder_generator(1, emsize)
, input_normalization=input_normalization
, pos_encoder=pos_encoder
, decoder_dict=decoder_dict
, init_method=initializer
, efficient_eval_masking=efficient_eval_masking
, decoder_once_dict=decoder_once_dict
, num_global_att_tokens=num_global_att_tokens
, **model_extra_args
)
model.criterion = criterion
if load_weights_from_this_state_dict is not None:
model.load_state_dict(load_weights_from_this_state_dict)
if initialize_with_model is not None:
model.init_from_small_model(initialize_with_model)
print(f"Using a Transformer with {sum(p.numel() for p in model.parameters())/1000/1000:.{2}f} M parameters")
try:
for (k, v), (k2, v2) in zip(model.state_dict().items(), initialize_with_model.state_dict().items()):
print(k, ((v - v2) / v).abs().mean(), v.shape)
except Exception:
pass
model.to(device)
if using_dist:
print("Distributed training")
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[rank],
output_device=rank,
broadcast_buffers=False,
find_unused_parameters=test_batch.mean_prediction is not None)
dl.model = model.module # use local model, should not use multi-gpu functionality..
else:
dl.model = model
# learning rate
if lr is None:
lr = get_openai_lr(model)
print(f"Using OpenAI max lr of {lr}.")
optimizer = torch.optim.AdamW(model.parameters(), lr=lr, weight_decay=weight_decay)
scheduler = scheduler(optimizer, warmup_epochs, epochs if epochs is not None else 100) # when training for fixed time lr schedule takes 100 steps
scaler = GradScaler() if train_mixed_precision else None
# check that everything uses up-to-date APIs
utils.check_compatibility(dl)
def train_epoch():
model.train() # Turn on the train mode
total_loss = 0.
total_positional_losses = 0.
total_positional_losses_recorded = 0
nan_steps = 0
ignore_steps = 0
before_get_batch = time.time()
assert len(dl) % aggregate_k_gradients == 0, 'Please set the number of steps per epoch s.t. `aggregate_k_gradients` divides it.'
tqdm_iter = tqdm(range(len(dl)), desc='Training Epoch') if rank==0 and progress_bar else None # , disable=not verbose
for batch, full_data in enumerate(dl):
data, targets, single_eval_pos = (full_data.style, full_data.x, full_data.y), full_data.target_y, full_data.single_eval_pos
def get_metrics():
return total_loss / steps_per_epoch, (
total_positional_losses / total_positional_losses_recorded).tolist(), \
time_to_get_batch, forward_time, step_time, nan_steps.cpu().item() / (batch + 1), \
ignore_steps.cpu().item() / (batch + 1)
tqdm_iter.update() if tqdm_iter is not None else None
if using_dist and not (batch % aggregate_k_gradients == aggregate_k_gradients - 1):
cm = model.no_sync()
else:
cm = nullcontext()
with cm:
time_to_get_batch = time.time() - before_get_batch
before_forward = time.time()
try:
metrics_to_log = {}
with autocast(enabled=scaler is not None):
# If style is set to None, it should not be transferred to device
out = model(tuple(e.to(device) if torch.is_tensor(e) else e for e in data),
single_eval_pos=single_eval_pos, only_return_standard_out=False)
# this handling is for training old models only, this can be deleted soon(ish)
# to only support models that return a tuple of dicts
out, output_once = out if isinstance(out, tuple) else (out, None)
output = out['standard'] if isinstance(out, dict) else out
forward_time = time.time() - before_forward
if single_eval_pos is not None:
targets = targets[single_eval_pos:]
if len(targets.shape) == len(output.shape):
# this implies the prior uses a trailing 1 dimesnion
# below we assume this not to be the case
targets = targets.squeeze(-1)
assert targets.shape == output.shape[:-1], f"Target shape {targets.shape} " \
"does not match output shape {output.shape}"
if isinstance(criterion, nn.GaussianNLLLoss):
assert output.shape[-1] == 2, \
'need to write a little bit of code to handle multiple regression targets at once'
mean_pred = output[..., 0]
var_pred = output[..., 1].abs()
losses = criterion(mean_pred.flatten(), targets.flatten(), var=var_pred.flatten())
elif isinstance(criterion, (nn.MSELoss, nn.BCEWithLogitsLoss)):
targets[torch.isnan(targets)] = -100
losses = criterion(output.flatten(), targets.flatten())
elif isinstance(criterion, nn.CrossEntropyLoss):
targets[torch.isnan(targets)] = -100
print(f"{targets.min()=}, {targets.max()=}")
losses = criterion(output.reshape(-1, n_out), targets.long().flatten())
elif border_decoder is not None:
def apply_batch_wise_criterion(i):
output_, targets_, borders_ = output_adaptive[:, i], targets[:, i], borders[i]
criterion_ = get_custom_bar_dist(borders_, criterion).to(device)
return criterion_(output_, targets_)
output_adaptive, borders = out['adaptive_bar'], output_once['borders']
losses_adaptive_bar = torch.stack([apply_batch_wise_criterion(i) for i in range(output_adaptive.shape[1])], 1)
losses_fixed_bar = criterion(output, targets)
losses = (losses_adaptive_bar + losses_fixed_bar) / 2
metrics_to_log = {**metrics_to_log,
**{'loss_fixed_bar': losses_fixed_bar.mean().cpu().detach().item(),
'loss_adaptive_bar': losses_adaptive_bar.mean().cpu().detach().item()}}
elif isinstance(criterion, BarDistribution) and full_data.mean_prediction:
assert 'mean_prediction' in output_once
utils.print_once('Using mean prediction for loss')
losses = criterion(output, targets, mean_prediction_logits=output_once['mean_prediction'])
# the mean pred loss appears as the last per sequence
else:
losses = criterion(output, targets)
losses = losses.view(-1, output.shape[1]) # sometimes the seq length can be one off
# that is because bar dist appends the mean
loss, nan_share = utils.torch_nanmean(losses.mean(0), return_nanshare=True)
loss_scaled = loss / aggregate_k_gradients
if scaler: loss_scaled = scaler.scale(loss_scaled)
loss_scaled.backward()
if batch % aggregate_k_gradients == aggregate_k_gradients - 1:
if scaler: scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.)
if scaler:
scaler.step(optimizer)
scaler.update()
else:
optimizer.step()
optimizer.zero_grad()
step_time = time.time() - before_forward
if not torch.isnan(loss):
total_loss += loss.cpu().detach().item()
total_positional_losses += losses.mean(1).cpu().detach() if single_eval_pos is None else \
nn.functional.one_hot(torch.tensor(single_eval_pos), seq_len)*\
utils.torch_nanmean(losses[:seq_len-single_eval_pos].mean(0)).cpu().detach()
total_positional_losses_recorded += torch.ones(seq_len) if single_eval_pos is None else \
nn.functional.one_hot(torch.tensor(single_eval_pos), seq_len)
metrics_to_log = {**metrics_to_log, **{f"loss": loss, "single_eval_pos": single_eval_pos}}
if step_callback is not None and rank == 0:
step_callback(metrics_to_log)
nan_steps += nan_share
ignore_steps += (targets == -100).float().mean()
except Exception as e:
print("Invalid step encountered, skipping...")
print(e)
raise(e)
#total_loss, total_positional_losses, time_to_get_batch, forward_time, step_time, nan_share, ignore_share = get_metrics()
if tqdm_iter:
tqdm_iter.set_postfix({'data_time': time_to_get_batch, 'step_time': step_time, 'mean_loss': total_loss / (batch+1)})
before_get_batch = time.time()
return get_metrics()
total_loss = float('inf')
total_positional_losses = float('inf')
try:
# Initially test the epoch callback function
if epoch_callback is not None and rank == 0:
epoch_callback(model, 1, data_loader=dl, scheduler=scheduler)
for epoch in (range(1, epochs + 1) if epochs is not None else itertools.count(1)):
epoch_start_time = time.time()
try:
total_loss, total_positional_losses, time_to_get_batch, forward_time, step_time, nan_share, ignore_share =\
train_epoch()
except Exception as e:
print("Invalid epoch encountered, skipping...")
print(e)
raise (e)
if hasattr(dl, 'validate') and epoch % validation_period == 0:
with torch.no_grad():
val_score = dl.validate(model)
else:
val_score = None
if verbose:
print('-' * 89)
print(
f'| end of epoch {epoch:3d} | time: {(time.time() - epoch_start_time):5.2f}s | mean loss {total_loss:5.2f} | '
f"pos losses {','.join([f'{l:5.2f}' for l in total_positional_losses])}, lr {scheduler.get_last_lr()[0]}"
f' data time {time_to_get_batch:5.2f} step time {step_time:5.2f}'
f' forward time {forward_time:5.2f}'
f' nan share {nan_share:5.2f} ignore share (for classification tasks) {ignore_share:5.4f}'
+ (f'val score {val_score}' if val_score is not None else ''))
print('-' * 89)
# stepping with wallclock time based scheduler
if epoch_callback is not None and rank == 0:
epoch_callback(model, epoch, data_loader=dl, scheduler=scheduler)
scheduler.step()
except KeyboardInterrupt:
pass
if rank == 0: # trivially true for non-parallel training
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
model = model.module
dl = None
return total_loss, total_positional_losses, model.to('cpu'), dl
def _parse_args(config_parser, parser):
# Do we have a config file to parse?
args_config, remaining = config_parser.parse_known_args()
if args_config.config:
with open(args_config.config, 'r') as f:
cfg = yaml.safe_load(f)
parser.set_defaults(**cfg)
# The main arg parser parses the rest of the args, the usual
# defaults will have been overridden if config file specified.
args = parser.parse_args(remaining)
# Cache the args as a text string to save them in the output dir later
args_text = yaml.safe_dump(args.__dict__, default_flow_style=False)
return args, args_text