Spaces:
Sleeping
Sleeping
import os | |
import math | |
import argparse | |
import random | |
import datetime | |
import itertools | |
import torch | |
from torch import nn | |
from torch.optim.lr_scheduler import LambdaLR | |
import numpy as np | |
# copied from huggingface | |
def get_cosine_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_cycles=0.5, last_epoch=-1): | |
""" Create a schedule with a learning rate that decreases following the | |
values of the cosine function between 0 and `pi * cycles` after a warmup | |
period during which it increases linearly between 0 and 1. | |
""" | |
def lr_lambda(current_step): | |
if current_step < num_warmup_steps: | |
return float(current_step) / float(max(1, num_warmup_steps)) | |
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps)) | |
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))) | |
return LambdaLR(optimizer, lr_lambda, last_epoch) | |
# copied from huggingface | |
def get_restarting_cosine_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, steps_per_restart, num_cycles=0.5, last_epoch=-1): | |
assert num_training_steps % steps_per_restart == 0 | |
def inner_lr_lambda(current_step, num_warmup_steps, num_training_steps): | |
if current_step < num_warmup_steps: | |
return float(current_step) / float(max(1, num_warmup_steps)) | |
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps)) | |
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))) | |
def lr_lambda(current_step): | |
inner_step = current_step % steps_per_restart | |
return inner_lr_lambda(inner_step, | |
num_warmup_steps if current_step < steps_per_restart else 0, | |
steps_per_restart | |
) | |
return LambdaLR(optimizer, lr_lambda, last_epoch) | |
# copied from huggingface | |
def get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, last_epoch=-1): | |
""" | |
Create a schedule with a learning rate that decreases linearly from the initial lr set in the optimizer to 0, after | |
a warmup period during which it increases linearly from 0 to the initial lr set in the optimizer. | |
Args: | |
optimizer (:class:`~torch.optim.Optimizer`): | |
The optimizer for which to schedule the learning rate. | |
num_warmup_steps (:obj:`int`): | |
The number of steps for the warmup phase. | |
num_training_steps (:obj:`int`): | |
The total number of training steps. | |
last_epoch (:obj:`int`, `optional`, defaults to -1): | |
The index of the last epoch when resuming training. | |
Return: | |
:obj:`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. | |
""" | |
def lr_lambda(current_step: int): | |
if current_step < num_warmup_steps: | |
return float(current_step) / float(max(1, num_warmup_steps)) | |
return max( | |
0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - num_warmup_steps)) | |
) | |
return LambdaLR(optimizer, lr_lambda, last_epoch) | |
def get_openai_lr(transformer_model): | |
num_params = sum(p.numel() for p in transformer_model.parameters()) | |
return 0.003239 - 0.0001395 * math.log(num_params) | |
def get_weighted_single_eval_pos_sampler(max_len, min_len=0, p=1.0): | |
""" | |
This gives a sampler that can be used for `single_eval_pos` which yields good performance for all positions p, | |
where p <= `max_len`. At most `max_len` - 1 examples are shown to the Transformer. | |
:return: Sampler that can be fed to `train()` as `single_eval_pos_gen`. | |
""" | |
return lambda: random.choices(range(min_len, max_len), [1 / math.pow(((max_len - min_len) - i), p) for i in range(max_len - min_len)])[0] | |
def get_uniform_single_eval_pos_sampler(max_len, min_len=0): | |
""" | |
Just sample any evaluation position with the same weight | |
:return: Sampler that can be fed to `train()` as `single_eval_pos_gen`. | |
""" | |
return lambda: random.choices(range(min_len, max_len))[0] | |
class SeqBN(nn.Module): | |
def __init__(self, d_model): | |
super().__init__() | |
self.bn = nn.BatchNorm1d(d_model) | |
self.d_model = d_model | |
def forward(self, x): | |
assert self.d_model == x.shape[-1] | |
flat_x = x.view(-1, self.d_model) | |
flat_x = self.bn(flat_x) | |
return flat_x.view(*x.shape) | |
def set_locals_in_self(locals): | |
""" | |
Call this function like `set_locals_in_self(locals())` to set all local variables as object variables. | |
Especially useful right at the beginning of `__init__`. | |
:param locals: `locals()` | |
""" | |
self = locals['self'] | |
for var_name, val in locals.items(): | |
if var_name != 'self': setattr(self, var_name, val) | |
default_device = 'cuda:0' if torch.cuda.is_available() else 'cpu:0' | |
# Copied from StackOverflow, but we do an eval on the values additionally | |
class StoreDictKeyPair(argparse.Action): | |
def __init__(self, option_strings, dest, nargs=None, **kwargs): | |
self._nargs = nargs | |
super(StoreDictKeyPair, self).__init__(option_strings, dest, nargs=nargs, **kwargs) | |
def __call__(self, parser, namespace, values, option_string=None): | |
my_dict = {} | |
for kv in values: | |
k, v = kv.split("=") | |
try: | |
my_dict[k] = eval(v) | |
except NameError: | |
my_dict[k] = v | |
setattr(namespace, self.dest, my_dict) | |
print("dict values: {}".format(my_dict)) | |
def get_nan_value(v, set_value_to_nan=1.0): | |
if random.random() < set_value_to_nan: | |
return v | |
else: | |
return random.choice([-999, 0, 1, 999]) | |
def to_ranking(data): | |
x = (data >= data.unsqueeze(-3)) | |
x = x.sum(0) | |
return x | |
# TODO: Is there a better way to do this? | |
# 1. Cmparing to unique elements: When all values are different we still get quadratic blowup | |
# 2. Argsort(Argsort()) returns ranking, but with duplicate values there is an ordering which is problematic | |
# 3. Argsort(Argsort(Unique))->Scatter seems a bit complicated, doesn't have quadratic blowup, but how fast? | |
def to_ranking_low_mem(data): | |
x = torch.zeros_like(data) | |
for col in range(data.shape[-1]): | |
x_ = (data[:, :, col] >= data[:, :, col].unsqueeze(-2)) | |
x_ = x_.sum(0) | |
x[:, :, col] = x_ | |
return x | |
def nan_handling_missing_for_unknown_reason_value(nan_prob=1.0): | |
return get_nan_value(float('nan'), nan_prob) | |
def nan_handling_missing_for_no_reason_value(nan_prob=1.0): | |
return get_nan_value(float('-inf'), nan_prob) | |
def nan_handling_missing_for_a_reason_value(nan_prob=1.0): | |
return get_nan_value(float('inf'), nan_prob) | |
def torch_nanmean(x, axis=0, return_nanshare=False): | |
num = torch.where(torch.isnan(x), torch.full_like(x, 0), torch.full_like(x, 1)).sum(axis=axis) | |
value = torch.where(torch.isnan(x), torch.full_like(x, 0), x).sum(axis=axis) | |
if return_nanshare: | |
return value / num, 1.-num/x.shape[axis] | |
return value / num | |
def torch_nanstd(x, axis=0): | |
num = torch.where(torch.isnan(x), torch.full_like(x, 0), torch.full_like(x, 1)).sum(axis=axis) | |
value = torch.where(torch.isnan(x), torch.full_like(x, 0), x).sum(axis=axis) | |
mean = value / num | |
mean_broadcast = torch.repeat_interleave(mean.unsqueeze(axis), x.shape[axis], dim=axis) | |
return torch.sqrt(torch.nansum(torch.square(mean_broadcast - x), axis=axis) / (num - 1)) | |
def normalize_data(data, normalize_positions=-1, return_scaling=False): | |
if normalize_positions > 0: | |
mean = torch_nanmean(data[:normalize_positions], axis=0) | |
std = torch_nanstd(data[:normalize_positions], axis=0) + .000001 | |
else: | |
mean = torch_nanmean(data, axis=0) | |
std = torch_nanstd(data, axis=0) + .000001 | |
data = (data - mean) / std | |
data = torch.clip(data, min=-100, max=100) | |
if return_scaling: | |
return data, (mean, std) | |
return data | |
def remove_outliers(X, n_sigma=4, normalize_positions=-1): | |
# Expects T, B, H | |
assert len(X.shape) == 3, "X must be T,B,H" | |
#for b in range(X.shape[1]): | |
#for col in range(X.shape[2]): | |
data = X if normalize_positions == -1 else X[:normalize_positions] | |
data_clean = data[:].clone() | |
data_mean, data_std = torch_nanmean(data, axis=0), torch_nanstd(data, axis=0) | |
cut_off = data_std * n_sigma | |
lower, upper = data_mean - cut_off, data_mean + cut_off | |
data_clean[torch.logical_or(data_clean > upper, data_clean < lower)] = np.nan | |
data_mean, data_std = torch_nanmean(data_clean, axis=0), torch_nanstd(data_clean, axis=0) | |
cut_off = data_std * n_sigma | |
lower, upper = data_mean - cut_off, data_mean + cut_off | |
X = torch.maximum(-torch.log(1+torch.abs(X)) + lower, X) | |
X = torch.minimum(torch.log(1+torch.abs(X)) + upper, X) | |
# print(ds[1][data < lower, col], ds[1][data > upper, col], ds[1][~np.isnan(data), col].shape, data_mean, data_std) | |
return X | |
def bool_mask_to_att_mask(mask): | |
return mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) | |
def print_on_master_only(is_master): | |
import builtins as __builtin__ | |
builtin_print = __builtin__.print | |
def print(*args, **kwargs): | |
force = kwargs.pop("force", False) | |
if is_master or force: | |
builtin_print(*args, **kwargs) | |
__builtin__.print = print | |
def init_dist(device): | |
print('init dist') | |
if 'LOCAL_RANK' in os.environ: | |
# launched with torch.distributed.launch | |
rank = int(os.environ["LOCAL_RANK"]) | |
print('torch.distributed.launch and my rank is', rank) | |
torch.cuda.set_device(rank) | |
os.environ['CUDA_VISIBLE_DEVICES'] = str(rank) | |
torch.distributed.init_process_group(backend="nccl", init_method="env://", timeout=datetime.timedelta(seconds=20), | |
world_size=torch.cuda.device_count(), rank=rank) | |
torch.distributed.barrier() | |
print_on_master_only(rank == 0) | |
print(f"Distributed training on {torch.cuda.device_count()} GPUs, this is rank {rank}, " | |
"only I can print, but when using print(..., force=True) it will print on all ranks.") | |
return True, rank, f'cuda:{rank}' | |
elif 'SLURM_PROCID' in os.environ and torch.cuda.device_count() > 1: | |
# this is for multi gpu when starting with submitit | |
assert device != 'cpu:0' | |
rank = int(os.environ['SLURM_PROCID']) | |
os.environ['MASTER_ADDR'] = 'localhost' | |
os.environ['MASTER_PORT'] = '12355' | |
torch.cuda.set_device(rank) | |
os.environ['CUDA_VISIBLE_DEVICES'] = str(rank) | |
print('distributed submitit launch and my rank is', rank) | |
torch.distributed.init_process_group(backend="nccl", init_method="env://", timeout=datetime.timedelta(seconds=20), | |
world_size=torch.cuda.device_count(), rank=rank) | |
torch.distributed.barrier() | |
print_on_master_only(rank == 0) | |
print(f"Distributed training on {torch.cuda.device_count()} GPUs, this is rank {rank}, " | |
"only I can print, but when using print(..., force=True) it will print on all ranks.") | |
return True, rank, f'cuda:{rank}' | |
else: | |
print('Not using distributed') | |
# will not change any of the behavior of print, but allows putting the force=True in the print calls | |
print_on_master_only(True) | |
return False, 0, device | |
# NOP decorator for python with statements (x = NOP(); with x:) | |
class NOP(): | |
def __enter__(self): | |
pass | |
def __exit__(self, type, value, traceback): | |
pass | |
def check_compatibility(dl): | |
if hasattr(dl, 'num_outputs'): | |
print('`num_outputs` for the DataLoader is deprecated. It is assumed to be 1 from now on.') | |
assert dl.num_outputs != 1, "We assume num_outputs to be 1. Instead of the num_ouputs change your loss." \ | |
"We specify the number of classes in the CE loss." | |
def product_dict(dic): | |
keys = dic.keys() | |
vals = dic.values() | |
for instance in itertools.product(*vals): | |
yield dict(zip(keys, instance)) | |
def to_tensor(x, device=None): | |
if isinstance(x, torch.Tensor): | |
return x.to(device) | |
else: | |
return torch.tensor(x,device=device) | |
printed_already = set() | |
def print_once(*msgs: str): | |
msg = ' '.join([repr(m) for m in msgs]) | |
if msg not in printed_already: | |
print(msg) | |
printed_already.add(msg) | |