Spaces:
Runtime error
Runtime error
import os | |
import argparse | |
import gradio as gr | |
from datetime import datetime | |
import numpy as np | |
import torch | |
from diffusers.image_processor import VaeImageProcessor | |
from huggingface_hub import snapshot_download | |
from PIL import Image | |
from model.cloth_masker import AutoMasker, vis_mask | |
from model.flux.pipeline_flux_tryon import FluxTryOnPipeline | |
from utils import resize_and_crop, resize_and_padding | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="FLUX Try-On Demo") | |
parser.add_argument( | |
"--base_model_path", | |
type=str, | |
default="black-forest-labs/FLUX.1-Fill-dev", | |
# default="Models/FLUX.1-Fill-dev", | |
help="The path to the base model to use for evaluation." | |
) | |
parser.add_argument( | |
"--resume_path", | |
type=str, | |
default="zhengchong/CatVTON", | |
help="The Path to the checkpoint of trained tryon model." | |
) | |
parser.add_argument( | |
"--output_dir", | |
type=str, | |
default="resource/demo/output", | |
help="The output directory where the model predictions will be written." | |
) | |
parser.add_argument( | |
"--mixed_precision", | |
type=str, | |
default="bf16", | |
choices=["no", "fp16", "bf16"], | |
help="Whether to use mixed precision." | |
) | |
parser.add_argument( | |
"--allow_tf32", | |
action="store_true", | |
default=True, | |
help="Whether or not to allow TF32 on Ampere GPUs." | |
) | |
parser.add_argument( | |
"--width", | |
type=int, | |
default=768, | |
help="The width of the input image." | |
) | |
parser.add_argument( | |
"--height", | |
type=int, | |
default=1024, | |
help="The height of the input image." | |
) | |
return parser.parse_args() | |
def image_grid(imgs, rows, cols): | |
assert len(imgs) == rows * cols | |
w, h = imgs[0].size | |
grid = Image.new("RGB", size=(cols * w, rows * h)) | |
for i, img in enumerate(imgs): | |
grid.paste(img, box=(i % cols * w, i // cols * h)) | |
return grid | |
def submit_function_flux( | |
person_image, | |
cloth_image, | |
cloth_type, | |
num_inference_steps, | |
guidance_scale, | |
seed, | |
show_type | |
): | |
# Process image editor input | |
person_image, mask = person_image["background"], person_image["layers"][0] | |
mask = Image.open(mask).convert("L") | |
if len(np.unique(np.array(mask))) == 1: | |
mask = None | |
else: | |
mask = np.array(mask) | |
mask[mask > 0] = 255 | |
mask = Image.fromarray(mask) | |
# Set random seed | |
generator = None | |
if seed != -1: | |
generator = torch.Generator(device='cuda').manual_seed(seed) | |
# Process input images | |
person_image = Image.open(person_image).convert("RGB") | |
cloth_image = Image.open(cloth_image).convert("RGB") | |
# Adjust image sizes | |
person_image = resize_and_crop(person_image, (args.width, args.height)) | |
cloth_image = resize_and_padding(cloth_image, (args.width, args.height)) | |
# Process mask | |
if mask is not None: | |
mask = resize_and_crop(mask, (args.width, args.height)) | |
else: | |
mask = automasker( | |
person_image, | |
cloth_type | |
)['mask'] | |
mask = mask_processor.blur(mask, blur_factor=9) | |
# Inference | |
result_image = pipeline_flux( | |
image=person_image, | |
condition_image=cloth_image, | |
mask_image=mask, | |
height=args.height, | |
width=args.width, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
generator=generator | |
).images[0] | |
# Post-processing | |
masked_person = vis_mask(person_image, mask) | |
# Return result based on show type | |
if show_type == "result only": | |
return result_image | |
else: | |
width, height = person_image.size | |
if show_type == "input & result": | |
condition_width = width // 2 | |
conditions = image_grid([person_image, cloth_image], 2, 1) | |
else: | |
condition_width = width // 3 | |
conditions = image_grid([person_image, masked_person, cloth_image], 3, 1) | |
conditions = conditions.resize((condition_width, height), Image.NEAREST) | |
new_result_image = Image.new("RGB", (width + condition_width + 5, height)) | |
new_result_image.paste(conditions, (0, 0)) | |
new_result_image.paste(result_image, (condition_width + 5, 0)) | |
return new_result_image | |
def person_example_fn(image_path): | |
return image_path | |
def app_gradio(): | |
with gr.Blocks(title="CatVTON with FLUX.1-Fill-dev") as demo: | |
gr.Markdown("# CatVTON with FLUX.1-Fill-dev") | |
with gr.Row(): | |
with gr.Column(scale=1, min_width=350): | |
with gr.Row(): | |
image_path_flux = gr.Image( | |
type="filepath", | |
interactive=True, | |
visible=False, | |
) | |
person_image_flux = gr.ImageEditor( | |
interactive=True, label="Person Image", type="filepath" | |
) | |
with gr.Row(): | |
with gr.Column(scale=1, min_width=230): | |
cloth_image_flux = gr.Image( | |
interactive=True, label="Condition Image", type="filepath" | |
) | |
with gr.Column(scale=1, min_width=120): | |
gr.Markdown( | |
'<span style="color: #808080; font-size: small;">Two ways to provide Mask:<br>1. Upload the person image and use the `ποΈ` above to draw the Mask (higher priority)<br>2. Select the `Try-On Cloth Type` to generate automatically </span>' | |
) | |
cloth_type = gr.Radio( | |
label="Try-On Cloth Type", | |
choices=["upper", "lower", "overall"], | |
value="upper", | |
) | |
submit_flux = gr.Button("Submit") | |
gr.Markdown( | |
'<center><span style="color: #FF0000">!!! Click only Once, Wait for Delay !!!</span></center>' | |
) | |
with gr.Accordion("Advanced Options", open=False): | |
num_inference_steps_flux = gr.Slider( | |
label="Inference Step", minimum=10, maximum=100, step=5, value=50 | |
) | |
# Guidence Scale | |
guidance_scale_flux = gr.Slider( | |
label="CFG Strenth", minimum=0.0, maximum=50, step=0.5, value=30 | |
) | |
# Random Seed | |
seed_flux = gr.Slider( | |
label="Seed", minimum=-1, maximum=10000, step=1, value=42 | |
) | |
show_type = gr.Radio( | |
label="Show Type", | |
choices=["result only", "input & result", "input & mask & result"], | |
value="input & mask & result", | |
) | |
with gr.Column(scale=2, min_width=500): | |
result_image_flux = gr.Image(interactive=False, label="Result") | |
with gr.Row(): | |
# Photo Examples | |
root_path = "resource/demo/example" | |
with gr.Column(): | |
gr.Examples( | |
examples=[ | |
os.path.join(root_path, "person", "men", _) | |
for _ in os.listdir(os.path.join(root_path, "person", "men")) | |
], | |
examples_per_page=4, | |
inputs=image_path_flux, | |
label="Person Examples β ", | |
) | |
gr.Examples( | |
examples=[ | |
os.path.join(root_path, "person", "women", _) | |
for _ in os.listdir(os.path.join(root_path, "person", "women")) | |
], | |
examples_per_page=4, | |
inputs=image_path_flux, | |
label="Person Examples β‘", | |
) | |
gr.Markdown( | |
'<span style="color: #808080; font-size: small;">*Person examples come from the demos of <a href="https://huggingface.co/spaces/levihsu/OOTDiffusion">OOTDiffusion</a> and <a href="https://www.outfitanyone.org">OutfitAnyone</a>. </span>' | |
) | |
with gr.Column(): | |
gr.Examples( | |
examples=[ | |
os.path.join(root_path, "condition", "upper", _) | |
for _ in os.listdir(os.path.join(root_path, "condition", "upper")) | |
], | |
examples_per_page=4, | |
inputs=cloth_image_flux, | |
label="Condition Upper Examples", | |
) | |
gr.Examples( | |
examples=[ | |
os.path.join(root_path, "condition", "overall", _) | |
for _ in os.listdir(os.path.join(root_path, "condition", "overall")) | |
], | |
examples_per_page=4, | |
inputs=cloth_image_flux, | |
label="Condition Overall Examples", | |
) | |
condition_person_exm = gr.Examples( | |
examples=[ | |
os.path.join(root_path, "condition", "person", _) | |
for _ in os.listdir(os.path.join(root_path, "condition", "person")) | |
], | |
examples_per_page=4, | |
inputs=cloth_image_flux, | |
label="Condition Reference Person Examples", | |
) | |
gr.Markdown( | |
'<span style="color: #808080; font-size: small;">*Condition examples come from the Internet. </span>' | |
) | |
image_path_flux.change( | |
person_example_fn, inputs=image_path_flux, outputs=person_image_flux | |
) | |
submit_flux.click( | |
submit_function_flux, | |
[person_image_flux, cloth_image_flux, cloth_type, num_inference_steps_flux, guidance_scale_flux, seed_flux, show_type], | |
result_image_flux, | |
) | |
demo.queue().launch(share=True, show_error=True) | |
# 解ζεζ° | |
args = parse_args() | |
# ε 载樑ε | |
repo_path = snapshot_download(repo_id=args.resume_path) | |
pipeline_flux = FluxTryOnPipeline.from_pretrained(args.base_model_path) | |
pipeline_flux.load_lora_weights( | |
os.path.join(repo_path, "flux-lora"), | |
weight_name='pytorch_lora_weights.safetensors' | |
) | |
pipeline_flux.to("cuda", torch.bfloat16) | |
# εε§ε AutoMasker | |
mask_processor = VaeImageProcessor( | |
vae_scale_factor=8, | |
do_normalize=False, | |
do_binarize=True, | |
do_convert_grayscale=True | |
) | |
automasker = AutoMasker( | |
densepose_ckpt=os.path.join(repo_path, "DensePose"), | |
schp_ckpt=os.path.join(repo_path, "SCHP"), | |
device='cuda' | |
) | |
if __name__ == "__main__": | |
app_gradio() | |