sabaridsnfuji's picture
Upload tf_post_processing.py
623aa4b verified
raw
history blame
9.68 kB
# -*- coding: utf-8 -*-
"""
Created on Mon Sep 4 16:03:42 2023
@author: SABARI
"""
import time
import tensorflow as tf
import numpy as np
#from lsnms import nms, wbc
def box_iou(box1, box2, eps=1e-7):
"""
Calculate intersection-over-union (IoU) of boxes.
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
Args:
box1 (tf.Tensor): A tensor of shape (N, 4) representing N bounding boxes.
box2 (tf.Tensor): A tensor of shape (M, 4) representing M bounding boxes.
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.
Returns:
(tf.Tensor): An NxM tensor containing the pairwise IoU values for every element in box1 and box2.
"""
a1, a2 = tf.split(box1, 2, axis=1)
b1, b2 = tf.split(box2, 2, axis=1)
inter = tf.reduce_prod(tf.maximum(tf.minimum(a2, b2) - tf.maximum(a1, b1), 0), axis=1)
return inter / (tf.reduce_prod(a2 - a1, axis=1) + tf.reduce_prod(b2 - b1, axis=1) - inter + eps)
def xywh2xyxy(x):
"""
Convert bounding box coordinates from (x, y, width, height) format to (x1, y1, x2, y2) format where (x1, y1) is the
top-left corner and (x2, y2) is the bottom-right corner.
Args:
x (tf.Tensor): The input bounding box coordinates in (x, y, width, height) format.
Returns:
y (tf.Tensor): The bounding box coordinates in (x1, y1, x2, y2) format.
"""
# Assuming x is a NumPy array
y = np.copy(x)
y[..., 0] = x[..., 0] - x[..., 2] / 2 # top left x
y[..., 1] = x[..., 1] - x[..., 3] / 2 # top left y
y[..., 2] = x[..., 0] + x[..., 2] / 2 # bottom right x
y[..., 3] = x[..., 1] + x[..., 3] / 2 # bottom right y
return y
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, agnostic=False,
multi_label=False, max_det=300, nc=0, # number of classes (optional)
max_time_img=0.05,
max_nms=100,
max_wh=7680):
"""
Perform non-maximum suppression (NMS) on a set of boxes, with support for masks and multiple labels per box.
Arguments:
prediction (tf.Tensor): A tensor of shape (batch_size, num_classes + 4 + num_masks, num_boxes)
containing the predicted boxes, classes, and masks. The tensor should be in the format
output by a model, such as YOLO.
conf_thres (float): The confidence threshold below which boxes will be filtered out.
Valid values are between 0.0 and 1.0.
iou_thres (float): The IoU threshold below which boxes will be filtered out during NMS.
Valid values are between 0.0 and 1.0.
agnostic (bool): If True, the model is agnostic to the number of classes, and all
classes will be considered as one.
multi_label (bool): If True, each box may have multiple labels.
max_det (int): The maximum number of boxes to keep after NMS.
nc (int): (optional) The number of classes output by the model. Any indices after this will be considered masks.
max_time_img (float): The maximum time (seconds) for processing one image.
max_nms (int): The maximum number of boxes into tf.image.combined_non_max_suppression().
max_wh (int): The maximum box width and height in pixels
Returns:
(List[tf.Tensor]): A list of length batch_size, where each element is a tensor of
shape (num_boxes, 6 + num_masks) containing the kept boxes, with columns
(x1, y1, x2, y2, confidence, class, mask1, mask2, ...).
"""
# Checks
assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'
if isinstance(prediction, (list, tuple)): # YOLOv8 model in validation model, output = (inference_out, loss_out)
prediction = prediction[0] # select only inference output
bs = np.shape(prediction)[0] # batch size
nc = nc or (np.shape(prediction)[1] - 4) # number of classes
nm = np.shape(prediction)[1] - nc - 4
mi = 4 + nc # mask start index
#xc = tf.math.reduce_any(prediction[:, 4:mi] > conf_thres, axis=1) # candidates
xc = np.amax(prediction[:, 4:mi], axis=1) > conf_thres
# Settings
# min_wh = 2 # (pixels) minimum box width and height
time_limit = 0.5 + max_time_img * tf.cast(bs, tf.float32) # seconds to quit after
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
t = time.time()
output = [np.zeros((0, 6 + nm))] * bs
for xi, x in enumerate(prediction): # image index, image inference
# Apply constraints
# x = tf.where(tf.math.logical_or(x[:, 2:4] < min_wh, x[:, 2:4] > max_wh), tf.constant(0, dtype=tf.float32), x) # width-height
#x = tf.boolean_mask(x, xc[xi])
#x = x.transpose(0, -1)[xc[xi]] # confidence
# Assuming x, xc, and xi are NumPy arrays
x = np.transpose(x)
#x = x.transpose()[:, xc[xi]]
x = x[xc[xi]]
# If none remain process next image
if np.shape(x)[0] == 0:
continue
# Detections matrix nx6 (xyxy, conf, cls)
#box, cls, mask = tf.split(x, [4, nc, nm], axis=1)
# Assuming x is a NumPy array
box = x[:, :4]
cls = x[:, 4:4 + nc]
mask = x[:, 4 + nc:]
box = xywh2xyxy(box) # center_x, center_y, width, height) to (x1, y1, x2, y2)
# Assuming cls is a NumPy array
if multi_label:
i, j = np.where(cls > conf_thres)
x = np.concatenate([box[i], np.expand_dims(cls[i, j], axis=-1), np.expand_dims(j, axis=-1).astype(np.float32), mask[i]], axis=1)
else:
conf = np.max(cls, axis=1)
j = np.argmax(cls, axis=1)
keep = np.where(conf > conf_thres)[0]
x = np.concatenate([box[keep], np.expand_dims(conf[keep], axis=-1), np.expand_dims(j[keep], axis=-1).astype(np.float32), mask[keep]], axis=1)
# Check shape
n = np.shape(x)[0] # number of boxes
if n == 0: # no boxes
continue
#x = x[tf.argsort(x[:, 4], direction='DESCENDING')[:max_nms]] # sort by confidence and remove excess boxes
sorted_indices = np.argsort(x[:, 4])[::-1] # Sort indices in descending order of confidence
x = x[sorted_indices[:max_nms]] # Keep the top max_nms boxes
# Batched NMS
c = x[:, 5:6] * (0.0 if agnostic else tf.cast(max_wh, tf.float32)) # classes
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
i = tf.image.non_max_suppression(boxes, scores, max_nms, iou_threshold=iou_thres) # NMS
i = i.numpy()
i = i[:max_det] # limit detections
output[xi] = x[i,:]
if (time.time() - t) > time_limit:
break # time limit exceeded
return output
import numpy as np
def optimized_object_detection(prediction, conf_thres=0.25, iou_thres=0.45, agnostic=False,
multi_label=False, max_det=300, nc=0, max_time_img=0.05,
max_nms=100, max_wh=7680):
assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'
if isinstance(prediction, (list, tuple)):
prediction = prediction[0]
bs, _, _ = prediction.shape # Get batch size and dimensions
if nc == 0:
nc = prediction.shape[1] - 4
nm = prediction.shape[1] - nc - 4
mi = 4 + nc
xc = np.amax(prediction[:, 4:mi], axis=1) > conf_thres
time_limit = 0.5 + max_time_img * bs
multi_label &= nc > 1
t = time.time()
output = [np.zeros((0, 6 + nm))] * bs
for xi, x in enumerate(prediction):
x = np.transpose(x)
x = x[xc[xi]]
if np.shape(x)[0] == 0:
continue
box = x[:, :4]
cls = x[:, 4:4 + nc]
mask = x[:, 4 + nc:]
box = xywh2xyxy(box)
if multi_label:
i, j = np.where(cls > conf_thres)
x = np.concatenate([box[i], np.expand_dims(cls[i, j], axis=-1), np.expand_dims(j, axis=-1).astype(np.float32), mask[i]], axis=1)
else:
conf = np.max(cls, axis=1)
j = np.argmax(cls, axis=1)
keep = np.where(conf > conf_thres)[0]
x = np.concatenate([box[keep], np.expand_dims(conf[keep], axis=-1), np.expand_dims(j[keep], axis=-1).astype(np.float32), mask[keep]], axis=1)
n = np.shape(x)[0]
if n == 0:
continue
sorted_indices = np.argsort(x[:, 4])[::-1]
x = x[sorted_indices[:max_nms]]
c = x[:, 5:6] * (0.0 if agnostic else max_wh)
boxes, scores = x[:, :4] + c, x[:, 4]
i = tf.image.non_max_suppression(boxes, scores, max_nms, iou_threshold=iou_thres)
#keep = nms(boxes, scores, iou_threshold=iou_thres)
i = i.numpy()
i = i[:max_det]
output[xi] = x[keep,:]
if (time.time() - t) > time_limit:
break
return output
#output_numpy = np.load(r"D:\object_face_person_detection\yolov8_tf_results\gustavo-alves-YOXSC4zRcxw-unsplash.npy")
#detections = non_max_suppression(output_numpy, conf_thres=0.4, iou_thres=0.4)[0]
#print(detections)