File size: 10,283 Bytes
6c2fd08
4ca155b
 
02cf0bb
85585aa
25893d0
324c98e
181cfde
 
 
 
 
 
 
 
 
 
4ca155b
532845f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ca155b
181cfde
e60730b
02cf0bb
4ca155b
02cf0bb
5ae24e1
181cfde
 
5ae24e1
 
 
 
 
 
02cf0bb
181cfde
02cf0bb
6c2fd08
02cf0bb
6c2fd08
e60730b
d98db84
324c98e
d98db84
 
181cfde
 
85585aa
02cf0bb
 
 
4ca155b
85585aa
 
 
 
 
 
 
02cf0bb
85585aa
02cf0bb
324c98e
 
c78be87
324c98e
02cf0bb
0be31e9
d98db84
6c2fd08
324c98e
 
e60730b
76cf633
 
 
 
 
 
 
 
85585aa
532845f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import torch
import torch.nn as nn
from torch.nn import functional as F
import tiktoken
import gradio as gr
import asyncio

# Try to import spaces, use a dummy decorator if not available
try:
    import spaces
    use_spaces_gpu = True
except ImportError:
    use_spaces_gpu = False
    # Dummy decorator in case spaces is not available
    def dummy_gpu_decorator(func):
        return func
    spaces = type('', (), {'GPU': dummy_gpu_decorator})()

# Define the GPTConfig class
class GPTConfig:
    def __init__(self):
        self.block_size = 1024
        self.vocab_size = 50304
        self.n_layer = 12
        self.n_head = 12
        self.n_embd = 768

# Define other necessary classes
class CausalSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        assert config.n_embd % config.n_head == 0
        self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
        self.c_proj = nn.Linear(config.n_embd, config.n_embd)
        self.n_head = config.n_head
        self.n_embd = config.n_embd
        self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))

    def forward(self, x):
        B, T, C = x.size()
        q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
        k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=True)
        y = y.transpose(1, 2).contiguous().view(B, T, C)
        return self.c_proj(y)

class MLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
        self.gelu = nn.GELU()
        self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)

    def forward(self, x):
        return self.c_proj(self.gelu(self.c_fc(x)))

class Block(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.ln_1 = nn.LayerNorm(config.n_embd)
        self.attn = CausalSelfAttention(config)
        self.ln_2 = nn.LayerNorm(config.n_embd)
        self.mlp = MLP(config)

    def forward(self, x):
        x = x + self.attn(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x

class GPT(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.transformer = nn.ModuleDict(dict(
            wte = nn.Embedding(config.vocab_size, config.n_embd),
            wpe = nn.Embedding(config.block_size, config.n_embd),
            h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
            ln_f = nn.LayerNorm(config.n_embd),
        ))
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        self.transformer.wte.weight = self.lm_head.weight
        self.apply(self._init_weights)

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

    def forward(self, idx, targets=None):
        device = idx.device
        b, t = idx.size()
        assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
        pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0)
        
        tok_emb = self.transformer.wte(idx)
        pos_emb = self.transformer.wpe(pos)
        x = tok_emb + pos_emb
        for block in self.transformer.h:
            x = block(x)
        x = self.transformer.ln_f(x)
        logits = self.lm_head(x)
        
        loss = None
        if targets is not None:
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
        
        return logits, loss

# Update the load_model function
@spaces.GPU
def load_model(model_path):
    config = GPTConfig()
    model = GPT(config)
    
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    checkpoint = torch.load(model_path, map_location=device)
    
    if 'model_state_dict' in checkpoint:
        model.load_state_dict(checkpoint['model_state_dict'])
    else:
        model.load_state_dict(checkpoint)
    
    model.eval()
    model.to(device)
    return model

enc = tiktoken.get_encoding('gpt2')

# Update the generate_text function
@spaces.GPU(duration=60)
async def generate_text(prompt, max_length=432, temperature=0.8, top_k=40):
    # Load the model inside the GPU-decorated function
    model = load_model('gpt_model.pth')
    device = next(model.parameters()).device
    input_ids = torch.tensor(enc.encode(prompt)).unsqueeze(0).to(device)
    generated = []
    
    with torch.no_grad():
        for _ in range(max_length):
            outputs, _ = model(input_ids)
            next_token_logits = outputs[:, -1, :]
            next_token_logits = next_token_logits / temperature
            top_k_logits, top_k_indices = torch.topk(next_token_logits, top_k, dim=-1)
            next_token_probs = F.softmax(top_k_logits, dim=-1)
            next_token_index = torch.multinomial(next_token_probs, num_samples=1)
            next_token = top_k_indices.gather(-1, next_token_index)
            
            input_ids = torch.cat([input_ids, next_token], dim=-1)
            generated.append(next_token.item())
            
            next_token_str = enc.decode([next_token.item()])
            yield next_token_str
            
            if next_token.item() == enc.encode('\n')[0] and len(generated) > 100:
                break
            
            await asyncio.sleep(0.02)

    if len(generated) == max_length:
        yield "... (output truncated due to length)"

# Add the gradio_generate function
@spaces.GPU(duration=60)
async def gradio_generate(prompt, max_length, temperature, top_k):
    output = ""
    async for token in generate_text(prompt, max_length, temperature, top_k):
        output += token
        yield output


# # Your existing imports and model code here...

css = """
<style>
    body {
        background-color: #0f1624;
        color: #e0e0e0;
        font-family: 'Courier New', monospace;
        background-image: 
            radial-gradient(white, rgba(255,255,255,.2) 2px, transparent 40px),
            radial-gradient(white, rgba(255,255,255,.15) 1px, transparent 30px),
            radial-gradient(white, rgba(255,255,255,.1) 2px, transparent 40px),
            radial-gradient(rgba(255,255,255,.4), rgba(255,255,255,.1) 2px, transparent 30px);
        background-size: 550px 550px, 350px 350px, 250px 250px, 150px 150px;
        background-position: 0 0, 40px 60px, 130px 270px, 70px 100px;
        animation: backgroundScroll 60s linear infinite;
    }
    @keyframes backgroundScroll {
        0% { background-position: 0 0, 40px 60px, 130px 270px, 70px 100px; }
        100% { background-position: 550px 550px, 590px 610px, 680px 820px, 620px 650px; }
    }
    .container { max-width: 800px; margin: 0 auto; padding: 20px; }
    .header {
        text-align: center;
        margin-bottom: 30px;
        font-family: 'Copperplate', fantasy;
        color: #ffd700;
        text-shadow: 0 0 10px #ffd700, 0 0 20px #ffd700, 0 0 30px #ffd700;
    }
    .chat-box {
        background-color: rgba(42, 42, 42, 0.7);
        border-radius: 15px;
        padding: 20px;
        margin-bottom: 20px;
        box-shadow: 0 0 20px rgba(255, 215, 0, 0.3);
    }
    .user-input {
        background-color: rgba(58, 58, 58, 0.8);
        border: 2px solid #ffd700;
        color: #ffffff;
        padding: 10px;
        border-radius: 5px;
        width: 100%;
        transition: all 0.3s ease;
    }
    .user-input:focus {
        box-shadow: 0 0 15px #ffd700;
    }
    .generate-btn {
        background-color: #ffd700;
        color: #0f1624;
        border: none;
        padding: 10px 20px;
        border-radius: 5px;
        cursor: pointer;
        font-weight: bold;
        transition: all 0.3s ease;
    }
    .generate-btn:hover {
        background-color: #ffec8b;
        transform: scale(1.05);
    }
    .output-box {
        background-color: rgba(42, 42, 42, 0.7);
        border-radius: 15px;
        padding: 20px;
        margin-top: 20px;
        min-height: 100px;
        border: 1px solid #ffd700;
        white-space: pre-wrap;
        font-family: 'Georgia', serif;
        line-height: 1.6;
        box-shadow: inset 0 0 10px rgba(255, 215, 0, 0.3);
    }
    .gr-slider {
        --slider-color: #ffd700;
    }
    .gr-box {
        border-color: #ffd700;
        background-color: rgba(42, 42, 42, 0.7);
    }
</style>
"""

with gr.Blocks(css=css) as demo:
    gr.HTML("<div class='header'><h1>🌟 Enchanted Tales Generator 🌟</h1></div>")
    
    with gr.Row():
        with gr.Column(scale=3):
            prompt = gr.Textbox(
                placeholder="Begin your magical journey here (e.g., 'In a realm beyond the mists of time...')",
                label="Story Incantation",
                elem_classes="user-input"
            )
        with gr.Column(scale=1):
            generate_btn = gr.Button("Weave the Tale", elem_classes="generate-btn")
    
    with gr.Row():
        max_length = gr.Slider(minimum=50, maximum=500, value=432, step=1, label="Scroll Length")
        temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.8, step=0.1, label="Magical Intensity")
        top_k = gr.Slider(minimum=1, maximum=100, value=40, step=1, label="Arcane Diversity")
    
    output = gr.Markdown(elem_classes="output-box")
    
    generate_btn.click(
        gradio_generate,
        inputs=[prompt, max_length, temperature, top_k],
        outputs=output
    )

    gr.HTML("""
    <div style="text-align: center; margin-top: 20px; font-style: italic; color: #ffd700;">
        "In the realm of imagination, every word is a spell, every sentence a charm."
    </div>
    """)

if __name__ == "__main__":
    demo.launch()