Spaces:
Paused
Paused
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
import tiktoken | |
import gradio as gr | |
import asyncio | |
# Try to import spaces, use a dummy decorator if not available | |
try: | |
import spaces | |
use_spaces_gpu = True | |
except ImportError: | |
use_spaces_gpu = False | |
# Dummy decorator in case spaces is not available | |
def dummy_gpu_decorator(func): | |
return func | |
spaces = type('', (), {'GPU': dummy_gpu_decorator})() | |
# Define the GPTConfig class | |
class GPTConfig: | |
def __init__(self): | |
self.block_size = 1024 | |
self.vocab_size = 50304 | |
self.n_layer = 12 | |
self.n_head = 12 | |
self.n_embd = 768 | |
# Define other necessary classes | |
class CausalSelfAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
assert config.n_embd % config.n_head == 0 | |
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd) | |
self.c_proj = nn.Linear(config.n_embd, config.n_embd) | |
self.n_head = config.n_head | |
self.n_embd = config.n_embd | |
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size)) | |
def forward(self, x): | |
B, T, C = x.size() | |
q, k, v = self.c_attn(x).split(self.n_embd, dim=2) | |
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=True) | |
y = y.transpose(1, 2).contiguous().view(B, T, C) | |
return self.c_proj(y) | |
class MLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd) | |
self.gelu = nn.GELU() | |
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd) | |
def forward(self, x): | |
return self.c_proj(self.gelu(self.c_fc(x))) | |
class Block(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.ln_1 = nn.LayerNorm(config.n_embd) | |
self.attn = CausalSelfAttention(config) | |
self.ln_2 = nn.LayerNorm(config.n_embd) | |
self.mlp = MLP(config) | |
def forward(self, x): | |
x = x + self.attn(self.ln_1(x)) | |
x = x + self.mlp(self.ln_2(x)) | |
return x | |
class GPT(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.transformer = nn.ModuleDict(dict( | |
wte = nn.Embedding(config.vocab_size, config.n_embd), | |
wpe = nn.Embedding(config.block_size, config.n_embd), | |
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), | |
ln_f = nn.LayerNorm(config.n_embd), | |
)) | |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
self.transformer.wte.weight = self.lm_head.weight | |
self.apply(self._init_weights) | |
def _init_weights(self, module): | |
if isinstance(module, nn.Linear): | |
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
if module.bias is not None: | |
torch.nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.Embedding): | |
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
def forward(self, idx, targets=None): | |
device = idx.device | |
b, t = idx.size() | |
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}" | |
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) | |
tok_emb = self.transformer.wte(idx) | |
pos_emb = self.transformer.wpe(pos) | |
x = tok_emb + pos_emb | |
for block in self.transformer.h: | |
x = block(x) | |
x = self.transformer.ln_f(x) | |
logits = self.lm_head(x) | |
loss = None | |
if targets is not None: | |
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) | |
return logits, loss | |
# Update the load_model function | |
def load_model(model_path): | |
config = GPTConfig() | |
model = GPT(config) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
checkpoint = torch.load(model_path, map_location=device) | |
if 'model_state_dict' in checkpoint: | |
model.load_state_dict(checkpoint['model_state_dict']) | |
else: | |
model.load_state_dict(checkpoint) | |
model.eval() | |
model.to(device) | |
return model | |
enc = tiktoken.get_encoding('gpt2') | |
# Update the generate_text function | |
async def generate_text(prompt, max_length=432, temperature=0.8, top_k=40): | |
# Load the model inside the GPU-decorated function | |
model = load_model('gpt_model.pth') | |
device = next(model.parameters()).device | |
input_ids = torch.tensor(enc.encode(prompt)).unsqueeze(0).to(device) | |
generated = [] | |
with torch.no_grad(): | |
for _ in range(max_length): | |
outputs, _ = model(input_ids) | |
next_token_logits = outputs[:, -1, :] | |
next_token_logits = next_token_logits / temperature | |
top_k_logits, top_k_indices = torch.topk(next_token_logits, top_k, dim=-1) | |
next_token_probs = F.softmax(top_k_logits, dim=-1) | |
next_token_index = torch.multinomial(next_token_probs, num_samples=1) | |
next_token = top_k_indices.gather(-1, next_token_index) | |
input_ids = torch.cat([input_ids, next_token], dim=-1) | |
generated.append(next_token.item()) | |
next_token_str = enc.decode([next_token.item()]) | |
yield next_token_str | |
if next_token.item() == enc.encode('\n')[0] and len(generated) > 100: | |
break | |
await asyncio.sleep(0.02) | |
if len(generated) == max_length: | |
yield "... (output truncated due to length)" | |
# Add the gradio_generate function | |
async def gradio_generate(prompt, max_length, temperature, top_k): | |
output = "" | |
async for token in generate_text(prompt, max_length, temperature, top_k): | |
output += token | |
yield output | |
# # Your existing imports and model code here... | |
css = """ | |
<style> | |
body { | |
background-color: #0f1624; | |
color: #e0e0e0; | |
font-family: 'Courier New', monospace; | |
background-image: | |
radial-gradient(white, rgba(255,255,255,.2) 2px, transparent 40px), | |
radial-gradient(white, rgba(255,255,255,.15) 1px, transparent 30px), | |
radial-gradient(white, rgba(255,255,255,.1) 2px, transparent 40px), | |
radial-gradient(rgba(255,255,255,.4), rgba(255,255,255,.1) 2px, transparent 30px); | |
background-size: 550px 550px, 350px 350px, 250px 250px, 150px 150px; | |
background-position: 0 0, 40px 60px, 130px 270px, 70px 100px; | |
animation: backgroundScroll 60s linear infinite; | |
} | |
@keyframes backgroundScroll { | |
0% { background-position: 0 0, 40px 60px, 130px 270px, 70px 100px; } | |
100% { background-position: 550px 550px, 590px 610px, 680px 820px, 620px 650px; } | |
} | |
.container { max-width: 800px; margin: 0 auto; padding: 20px; } | |
.header { | |
text-align: center; | |
margin-bottom: 30px; | |
font-family: 'Copperplate', fantasy; | |
color: #ffd700; | |
text-shadow: 0 0 10px #ffd700, 0 0 20px #ffd700, 0 0 30px #ffd700; | |
} | |
.chat-box { | |
background-color: rgba(42, 42, 42, 0.7); | |
border-radius: 15px; | |
padding: 20px; | |
margin-bottom: 20px; | |
box-shadow: 0 0 20px rgba(255, 215, 0, 0.3); | |
} | |
.user-input { | |
background-color: rgba(58, 58, 58, 0.8); | |
border: 2px solid #ffd700; | |
color: #ffffff; | |
padding: 10px; | |
border-radius: 5px; | |
width: 100%; | |
transition: all 0.3s ease; | |
} | |
.user-input:focus { | |
box-shadow: 0 0 15px #ffd700; | |
} | |
.generate-btn { | |
background-color: #ffd700; | |
color: #0f1624; | |
border: none; | |
padding: 10px 20px; | |
border-radius: 5px; | |
cursor: pointer; | |
font-weight: bold; | |
transition: all 0.3s ease; | |
} | |
.generate-btn:hover { | |
background-color: #ffec8b; | |
transform: scale(1.05); | |
} | |
.output-box { | |
background-color: rgba(42, 42, 42, 0.7); | |
border-radius: 15px; | |
padding: 20px; | |
margin-top: 20px; | |
min-height: 100px; | |
border: 1px solid #ffd700; | |
white-space: pre-wrap; | |
font-family: 'Georgia', serif; | |
line-height: 1.6; | |
box-shadow: inset 0 0 10px rgba(255, 215, 0, 0.3); | |
} | |
.gr-slider { | |
--slider-color: #ffd700; | |
} | |
.gr-box { | |
border-color: #ffd700; | |
background-color: rgba(42, 42, 42, 0.7); | |
} | |
</style> | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML("<div class='header'><h1>🌟 Enchanted Tales Generator 🌟</h1></div>") | |
with gr.Row(): | |
with gr.Column(scale=3): | |
prompt = gr.Textbox( | |
placeholder="Begin your magical journey here (e.g., 'In a realm beyond the mists of time...')", | |
label="Story Incantation", | |
elem_classes="user-input" | |
) | |
with gr.Column(scale=1): | |
generate_btn = gr.Button("Weave the Tale", elem_classes="generate-btn") | |
with gr.Row(): | |
max_length = gr.Slider(minimum=50, maximum=500, value=432, step=1, label="Scroll Length") | |
temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.8, step=0.1, label="Magical Intensity") | |
top_k = gr.Slider(minimum=1, maximum=100, value=40, step=1, label="Arcane Diversity") | |
output = gr.Markdown(elem_classes="output-box") | |
generate_btn.click( | |
gradio_generate, | |
inputs=[prompt, max_length, temperature, top_k], | |
outputs=output | |
) | |
gr.HTML(""" | |
<div style="text-align: center; margin-top: 20px; font-style: italic; color: #ffd700;"> | |
"In the realm of imagination, every word is a spell, every sentence a charm." | |
</div> | |
""") | |
if __name__ == "__main__": | |
demo.launch() |