File size: 10,207 Bytes
8e31ab1
 
bf55041
8e31ab1
bf55041
44f3097
bf55041
8e31ab1
bf55041
 
8d741e2
bf55041
 
 
 
 
8d741e2
bf55041
 
 
 
44f3097
bf55041
 
 
 
 
 
 
44f3097
bf55041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d741e2
 
bf55041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e266b1f
bf55041
e266b1f
bf55041
8d741e2
bf55041
 
 
 
 
 
44f3097
bf55041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d741e2
 
bf55041
e266b1f
bf55041
 
e266b1f
8e31ab1
bf55041
8d741e2
bf55041
 
 
8d741e2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPProcessor, CLIPModel
from PIL import Image
import logging
import spaces
import numpy

# Setup logging
logging.basicConfig(level=logging.INFO)

class LLaVAPhiModel:
    def __init__(self, model_id="sagar007/Lava_phi"):
        self.device = "cuda"
        self.model_id = model_id
        logging.info("Initializing LLaVA-Phi model...")
        
        # Initialize tokenizer
        self.tokenizer = AutoTokenizer.from_pretrained(model_id)
        if self.tokenizer.pad_token is None:
            self.tokenizer.pad_token = self.tokenizer.eos_token
        
        try:
            # Use CLIPProcessor directly instead of AutoProcessor
            self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
            logging.info("Successfully loaded CLIP processor")
        except Exception as e:
            logging.error(f"Failed to load CLIP processor: {str(e)}")
            self.processor = None
        
        self.history = []
        self.model = None
        self.clip = None

    @spaces.GPU
    def ensure_models_loaded(self):
        """Ensure models are loaded in GPU context"""
        if self.model is None:
            # Load main model with updated quantization config
            from transformers import BitsAndBytesConfig
            quantization_config = BitsAndBytesConfig(
                load_in_4bit=True,
                bnb_4bit_compute_dtype=torch.float16,
                bnb_4bit_use_double_quant=True,
                bnb_4bit_quant_type="nf4"
            )
            
            try:
                self.model = AutoModelForCausalLM.from_pretrained(
                    self.model_id,
                    quantization_config=quantization_config,
                    device_map="auto",
                    torch_dtype=torch.bfloat16,
                    trust_remote_code=True
                )
                self.model.config.pad_token_id = self.tokenizer.eos_token_id
                logging.info("Successfully loaded main model")
            except Exception as e:
                logging.error(f"Failed to load main model: {str(e)}")
                raise

        if self.clip is None:
            try:
                # Use CLIPModel directly instead of AutoModel
                self.clip = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(self.device)
                logging.info("Successfully loaded CLIP model")
            except Exception as e:
                logging.error(f"Failed to load CLIP model: {str(e)}")
                self.clip = None

    @spaces.GPU
    def process_image(self, image):
        """Process image through CLIP if available"""
        try:
            self.ensure_models_loaded()
            
            if self.clip is None or self.processor is None:
                logging.warning("CLIP model or processor not available")
                return None
            
            # Convert image to correct format
            if isinstance(image, str):
                image = Image.open(image)
            elif isinstance(image, numpy.ndarray):
                image = Image.fromarray(image)
            
            # Ensure image is in RGB mode
            if image.mode != 'RGB':
                image = image.convert('RGB')
            
            with torch.no_grad():
                try:
                    # Process image with error handling
                    image_inputs = self.processor(images=image, return_tensors="pt")
                    image_features = self.clip.get_image_features(
                        pixel_values=image_inputs.pixel_values.to(self.device)
                    )
                    logging.info("Successfully processed image through CLIP")
                    return image_features
                except Exception as e:
                    logging.error(f"Error during image processing: {str(e)}")
                    return None
        except Exception as e:
            logging.error(f"Error in process_image: {str(e)}")
            return None

    @spaces.GPU(duration=120)
    def generate_response(self, message, image=None):
        try:
            self.ensure_models_loaded()
            
            if image is not None:
                image_features = self.process_image(image)
                has_image = image_features is not None
                if not has_image:
                    message = "Note: Image processing is not available - continuing with text only.\n" + message
                
                prompt = f"human: {'<image>' if has_image else ''}\n{message}\ngpt:"
                context = ""
                for turn in self.history[-3:]:
                    context += f"human: {turn[0]}\ngpt: {turn[1]}\n"
                
                full_prompt = context + prompt
                inputs = self.tokenizer(
                    full_prompt, 
                    return_tensors="pt", 
                    padding=True,
                    truncation=True,
                    max_length=512
                )
                inputs = {k: v.to(self.device) for k, v in inputs.items()}
                
                if has_image:
                    inputs["image_features"] = image_features
                
                with torch.no_grad():
                    outputs = self.model.generate(
                        **inputs,
                        max_new_tokens=256,
                        min_length=20,
                        temperature=0.7,
                        do_sample=True,
                        top_p=0.9,
                        top_k=40,
                        repetition_penalty=1.5,
                        no_repeat_ngram_size=3,
                        use_cache=True,
                        pad_token_id=self.tokenizer.pad_token_id,
                        eos_token_id=self.tokenizer.eos_token_id
                    )
            else:
                prompt = f"human: {message}\ngpt:"
                context = ""
                for turn in self.history[-3:]:
                    context += f"human: {turn[0]}\ngpt: {turn[1]}\n"
                
                full_prompt = context + prompt
                inputs = self.tokenizer(
                    full_prompt,
                    return_tensors="pt",
                    padding=True,
                    truncation=True,
                    max_length=512
                )
                inputs = {k: v.to(self.device) for k, v in inputs.items()}
                
                with torch.no_grad():
                    outputs = self.model.generate(
                        **inputs,
                        max_new_tokens=150,
                        min_length=20,
                        temperature=0.6,
                        do_sample=True,
                        top_p=0.85,
                        top_k=30,
                        repetition_penalty=1.8,
                        no_repeat_ngram_size=4,
                        use_cache=True,
                        pad_token_id=self.tokenizer.pad_token_id,
                        eos_token_id=self.tokenizer.eos_token_id
                    )
            
            response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
            
            # Clean up response
            if "gpt:" in response:
                response = response.split("gpt:")[-1].strip()
            if "human:" in response:
                response = response.split("human:")[0].strip()
            if "<image>" in response:
                response = response.replace("<image>", "").strip()
            
            self.history.append((message, response))
            return response
            
        except Exception as e:
            logging.error(f"Error generating response: {str(e)}")
            logging.error(f"Full traceback:", exc_info=True)
            return f"Error: {str(e)}"

    def clear_history(self):
        self.history = []
        return None

def create_demo():
    try:
        model = LLaVAPhiModel()
        
        with gr.Blocks(css="footer {visibility: hidden}") as demo:
            gr.Markdown(
                """
                # LLaVA-Phi Demo (ZeroGPU)
                Chat with a vision-language model that can understand both text and images.
                """
            )
            
            chatbot = gr.Chatbot(height=400)
            with gr.Row():
                with gr.Column(scale=0.7):
                    msg = gr.Textbox(
                        show_label=False,
                        placeholder="Enter text and/or upload an image",
                        container=False
                    )
                with gr.Column(scale=0.15, min_width=0):
                    clear = gr.Button("Clear")
                with gr.Column(scale=0.15, min_width=0):
                    submit = gr.Button("Submit", variant="primary")
            
            image = gr.Image(type="pil", label="Upload Image (Optional)")
            
            def respond(message, chat_history, image):
                if not message and image is None:
                    return chat_history
                
                response = model.generate_response(message, image)
                chat_history.append((message, response))
                return "", chat_history
            
            def clear_chat():
                model.clear_history()
                return None, None
            
            submit.click(
                respond,
                [msg, chatbot, image],
                [msg, chatbot],
            )
            
            clear.click(
                clear_chat,
                None,
                [chatbot, image],
            )
            
            msg.submit(
                respond,
                [msg, chatbot, image],
                [msg, chatbot],
            )
            
        return demo
    except Exception as e:
        logging.error(f"Error creating demo: {str(e)}")
        raise

if __name__ == "__main__":
    demo = create_demo()
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True
    )