Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,348 +1,124 @@
|
|
1 |
-
|
2 |
-
import spaces
|
3 |
-
|
4 |
-
# Then import other libraries
|
5 |
import torch
|
6 |
-
import
|
7 |
-
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration, AutoModelForCausalLM, AutoProcessor
|
8 |
-
from gtts import gTTS
|
9 |
import gradio as gr
|
|
|
10 |
from PIL import Image
|
11 |
-
import os
|
12 |
-
import base64
|
13 |
-
from io import BytesIO
|
14 |
-
|
15 |
-
import io
|
16 |
import subprocess
|
17 |
-
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
# Install flash-attn
|
22 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
#
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
except Exception as e:
|
62 |
-
print(f"Error loading vision model: {e}")
|
63 |
-
return None, None
|
64 |
-
|
65 |
-
|
66 |
-
# Load sarvam-2b for text generation within a GPU-decorated function
|
67 |
-
@spaces.GPU
|
68 |
-
def load_sarvam():
|
69 |
-
return load_pipeline('sarvamai/sarvam-2b-v0.5')
|
70 |
-
|
71 |
-
# Load Phi-3.5-vision-instruct model
|
72 |
@spaces.GPU
|
73 |
-
def
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, num_crops=16)
|
96 |
-
print("Processor loaded successfully")
|
97 |
-
|
98 |
-
return model, processor
|
99 |
-
except ImportError as e:
|
100 |
-
print(f"Error importing required modules: {str(e)}")
|
101 |
-
print("Please ensure all required dependencies are installed.")
|
102 |
-
except RuntimeError as e:
|
103 |
-
print(f"Runtime error (possibly CUDA out of memory): {str(e)}")
|
104 |
-
print("Consider using a smaller model or enabling GPU offloading.")
|
105 |
-
except Exception as e:
|
106 |
-
print(f"Unexpected error in loading vision model: {str(e)}")
|
107 |
-
|
108 |
-
return None, None
|
109 |
|
|
|
|
|
|
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
return "Error: Speech recognition model is not available. Please type your message instead."
|
116 |
-
|
117 |
-
try:
|
118 |
-
audio, sr = librosa.load(audio, sr=16000)
|
119 |
-
input_features = whisper_processor(audio, sampling_rate=sr, return_tensors="pt").input_features.to(whisper_model.device)
|
120 |
-
predicted_ids = whisper_model.generate(input_features)
|
121 |
-
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
122 |
-
return transcription
|
123 |
-
except Exception as e:
|
124 |
-
return f"Error processing audio: {str(e)}. Please type your message instead."
|
125 |
|
126 |
-
#
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
return "Error: Vision model is not available."
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
else:
|
140 |
-
# If it's not a PIL Image, assume it's a file path
|
141 |
-
with open(image, "rb") as image_file:
|
142 |
-
img_str = base64.b64encode(image_file.read()).decode()
|
143 |
-
|
144 |
-
# Format the input with image tag
|
145 |
-
formatted_prompt = f"{text_prompt}\n<image>data:image/png;base64,{img_str}</image>"
|
146 |
-
|
147 |
-
# Process the formatted prompt
|
148 |
-
inputs = processor(text=formatted_prompt, return_tensors="pt").to(vision_model.device)
|
149 |
-
|
150 |
-
# Generate text
|
151 |
-
with torch.no_grad():
|
152 |
-
outputs = vision_model.generate(
|
153 |
-
**inputs,
|
154 |
-
max_new_tokens=100,
|
155 |
-
do_sample=True,
|
156 |
-
top_k=50,
|
157 |
-
top_p=0.95,
|
158 |
-
num_return_sequences=1
|
159 |
-
)
|
160 |
-
|
161 |
-
generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
162 |
-
return generated_text
|
163 |
-
except Exception as e:
|
164 |
-
return f"Error processing image: {str(e)}"
|
165 |
-
|
166 |
-
# Generate response within a GPU-decorated function
|
167 |
-
@spaces.GPU
|
168 |
-
def generate_response(transcription, sarvam_pipe):
|
169 |
-
if sarvam_pipe is None:
|
170 |
-
return "Error: Text generation model is not available."
|
171 |
-
|
172 |
-
try:
|
173 |
-
# Generate response using the sarvam-2b model
|
174 |
-
response = sarvam_pipe(transcription, max_length=100, num_return_sequences=1)[0]['generated_text']
|
175 |
-
return response
|
176 |
-
except Exception as e:
|
177 |
-
return f"Error generating response: {str(e)}"
|
178 |
-
|
179 |
-
# Text-to-speech function
|
180 |
-
def text_to_speech(text, lang='hi'):
|
181 |
-
try:
|
182 |
-
# Use a better TTS engine for Indic languages
|
183 |
-
if lang in ['hi', 'bn', 'gu', 'kn', 'ml', 'mr', 'or', 'pa', 'ta', 'te']:
|
184 |
-
# You might want to use a different TTS library here
|
185 |
-
# For example, you could use the Google Cloud Text-to-Speech API
|
186 |
-
# or a specialized Indic language TTS library
|
187 |
-
|
188 |
-
# This is a placeholder for a better Indic TTS solution
|
189 |
-
tts = gTTS(text=text, lang=lang, tld='co.in') # Use Indian TLD
|
190 |
-
else:
|
191 |
-
tts = gTTS(text=text, lang=lang)
|
192 |
-
|
193 |
-
tts.save("response.mp3")
|
194 |
-
return "response.mp3"
|
195 |
-
except Exception as e:
|
196 |
-
print(f"Error in text-to-speech: {str(e)}")
|
197 |
-
return None
|
198 |
-
|
199 |
-
# Improved language detection function
|
200 |
-
def detect_language(text):
|
201 |
-
lang_codes = {
|
202 |
-
'bn': 'Bengali', 'gu': 'Gujarati', 'hi': 'Hindi', 'kn': 'Kannada',
|
203 |
-
'ml': 'Malayalam', 'mr': 'Marathi', 'or': 'Oriya', 'pa': 'Punjabi',
|
204 |
-
'ta': 'Tamil', 'te': 'Telugu', 'en': 'English'
|
205 |
-
}
|
206 |
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
except:
|
211 |
-
# Fallback to simple script-based detection
|
212 |
-
for code, lang in lang_codes.items():
|
213 |
-
if any(ord(char) >= 0x0900 and ord(char) <= 0x097F for char in text): # Devanagari script
|
214 |
-
return 'hi'
|
215 |
-
return 'en' # Default to English if no Indic script is detected
|
216 |
-
|
217 |
-
@spaces.GPU
|
218 |
-
def indic_vision_assistant(input_type, audio_input, text_input, image_input):
|
219 |
-
try:
|
220 |
-
whisper_processor, whisper_model = load_whisper()
|
221 |
-
sarvam_pipe = load_sarvam()
|
222 |
-
vision_model, processor = load_vision_model()
|
223 |
-
|
224 |
-
if input_type == "audio" and audio_input is not None:
|
225 |
-
transcription = process_audio_input(audio_input, whisper_processor, whisper_model)
|
226 |
-
elif input_type == "text" and text_input:
|
227 |
-
transcription = text_input
|
228 |
-
elif input_type == "image" and image_input is not None:
|
229 |
-
# Use a default prompt if no text input is provided
|
230 |
-
text_prompt = text_input if text_input else "Describe this image in detail."
|
231 |
-
transcription = process_image_input(image_input, text_prompt, vision_model, processor)
|
232 |
-
else:
|
233 |
-
return "Please provide either audio, text, or image input.", "No input provided.", None
|
234 |
-
|
235 |
-
response = generate_response(transcription, sarvam_pipe)
|
236 |
-
lang = detect_language(response)
|
237 |
-
audio_response = text_to_speech(response, lang)
|
238 |
-
|
239 |
-
return transcription, response, audio_response
|
240 |
-
except Exception as e:
|
241 |
-
error_message = f"An error occurred: {str(e)}"
|
242 |
-
return error_message, error_message, None
|
243 |
-
|
244 |
|
245 |
# Custom CSS
|
246 |
custom_css = """
|
247 |
-
body {
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
}
|
252 |
-
#custom-header {
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
}
|
259 |
-
|
260 |
-
font-size: 2.5rem;
|
261 |
-
margin-bottom: 0.5rem;
|
262 |
-
}
|
263 |
-
#custom-header h1 .blue {
|
264 |
-
color: #60a5fa;
|
265 |
-
}
|
266 |
-
#custom-header h1 .pink {
|
267 |
-
color: #f472b6;
|
268 |
-
}
|
269 |
-
#custom-header h2 {@spaces.GPU
|
270 |
-
def indic_vision_assistant(input_type, audio_input, text_input, image_input):
|
271 |
-
try:
|
272 |
-
whisper_processor, whisper_model = load_whisper()
|
273 |
-
sarvam_pipe = load_sarvam()
|
274 |
-
vision_model, processor = load_vision_model()
|
275 |
-
|
276 |
-
if input_type == "audio" and audio_input is not None:
|
277 |
-
transcription = process_audio_input(audio_input, whisper_processor, whisper_model)
|
278 |
-
elif input_type == "text" and text_input:
|
279 |
-
transcription = text_input
|
280 |
-
elif input_type == "image" and image_input is not None:
|
281 |
-
# Use a default prompt if no text input is provided
|
282 |
-
text_prompt = text_input if text_input else "Describe this image in detail."
|
283 |
-
transcription = process_image_input(image_input, text_prompt, vision_model, processor)
|
284 |
-
else:
|
285 |
-
return "Please provide either audio, text, or image input.", "No input provided.", None
|
286 |
-
|
287 |
-
response = generate_response(transcription, sarvam_pipe)
|
288 |
-
lang = detect_language(response)
|
289 |
-
audio_response = text_to_speech(response, lang)
|
290 |
-
|
291 |
-
return transcription, response, audio_response
|
292 |
-
except Exception as e:
|
293 |
-
error_message = f"An error occurred: {str(e)}"
|
294 |
-
return error_message, error_message, None
|
295 |
-
|
296 |
-
font-size: 1.5rem;
|
297 |
-
color: #94a3b8;
|
298 |
-
}
|
299 |
-
.suggestions {
|
300 |
-
display: flex;
|
301 |
-
justify-content: center;
|
302 |
-
flex-wrap: wrap;
|
303 |
-
gap: 1rem;
|
304 |
-
margin: 20px 0;
|
305 |
-
}
|
306 |
-
.suggestion {
|
307 |
-
background-color: #1e293b;
|
308 |
-
border-radius: 0.5rem;
|
309 |
-
padding: 1rem;
|
310 |
-
display: flex;
|
311 |
-
align-items: center;
|
312 |
-
transition: transform 0.3s ease;
|
313 |
-
width: 200px;
|
314 |
-
}
|
315 |
-
.suggestion:hover {
|
316 |
-
transform: translateY(-5px);
|
317 |
-
}
|
318 |
-
.suggestion-icon {
|
319 |
-
font-size: 1.5rem;
|
320 |
-
margin-right: 1rem;
|
321 |
-
background-color: #2d3748;
|
322 |
-
padding: 0.5rem;
|
323 |
-
border-radius: 50%;
|
324 |
-
}
|
325 |
-
.gradio-container {
|
326 |
-
max-width: 100% !important;
|
327 |
-
}
|
328 |
-
#component-0, #component-1, #component-2 {
|
329 |
-
max-width: 100% !important;
|
330 |
-
}
|
331 |
-
footer {
|
332 |
-
text-align: center;
|
333 |
-
margin-top: 2rem;
|
334 |
-
color: #64748b;
|
335 |
-
}
|
336 |
"""
|
337 |
|
338 |
# Custom HTML for the header
|
339 |
custom_header = """
|
340 |
<div id="custom-header">
|
341 |
-
<h1>
|
342 |
-
|
343 |
-
<span class="pink">User</span>
|
344 |
-
</h1>
|
345 |
-
<h2>How can I help you today?</h2>
|
346 |
</div>
|
347 |
"""
|
348 |
|
@@ -350,28 +126,25 @@ custom_header = """
|
|
350 |
custom_suggestions = """
|
351 |
<div class="suggestions">
|
352 |
<div class="suggestion">
|
353 |
-
<span class="suggestion-icon"
|
354 |
-
<p>
|
355 |
-
</div>
|
356 |
-
<div class="suggestion">
|
357 |
-
<span class="suggestion-icon">⌨️</span>
|
358 |
-
<p>Type in any Indic language</p>
|
359 |
</div>
|
360 |
<div class="suggestion">
|
361 |
<span class="suggestion-icon">🖼️</span>
|
362 |
-
<p>
|
363 |
</div>
|
364 |
<div class="suggestion">
|
365 |
<span class="suggestion-icon">🤖</span>
|
366 |
<p>Get AI-generated responses</p>
|
367 |
</div>
|
368 |
<div class="suggestion">
|
369 |
-
<span class="suggestion-icon"
|
370 |
-
<p>
|
371 |
</div>
|
372 |
</div>
|
373 |
"""
|
374 |
-
|
|
|
375 |
with gr.Blocks(css=custom_css, theme=gr.themes.Base().set(
|
376 |
body_background_fill="#0b0f19",
|
377 |
body_text_color="#e2e8f0",
|
@@ -380,30 +153,38 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Base().set(
|
|
380 |
button_primary_text_color="white",
|
381 |
block_title_text_color="#94a3b8",
|
382 |
block_label_text_color="#94a3b8",
|
383 |
-
)) as
|
384 |
gr.HTML(custom_header)
|
385 |
gr.HTML(custom_suggestions)
|
386 |
-
|
387 |
-
with gr.
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
|
|
|
|
|
|
2 |
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor, TextIteratorStreamer, BitsAndBytesConfig
|
|
|
|
|
4 |
import gradio as gr
|
5 |
+
from threading import Thread
|
6 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
7 |
import subprocess
|
8 |
+
import spaces # Add this import
|
9 |
|
10 |
+
# Install flash-attention
|
|
|
|
|
11 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
12 |
|
13 |
+
# Constants
|
14 |
+
TITLE = "<h1><center>Phi 3.5 Multimodal (Text + Vision)</center></h1>"
|
15 |
+
DESCRIPTION = "# Phi-3.5 Multimodal Demo (Text + Vision)"
|
16 |
+
|
17 |
+
# Model configurations
|
18 |
+
TEXT_MODEL_ID = "microsoft/Phi-3.5-mini-instruct"
|
19 |
+
VISION_MODEL_ID = "microsoft/Phi-3.5-vision-instruct"
|
20 |
+
|
21 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
22 |
+
|
23 |
+
# Quantization config for text model
|
24 |
+
quantization_config = BitsAndBytesConfig(
|
25 |
+
load_in_4bit=True,
|
26 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
27 |
+
bnb_4bit_use_double_quant=True,
|
28 |
+
bnb_4bit_quant_type="nf4"
|
29 |
+
)
|
30 |
+
|
31 |
+
# Load models and tokenizers
|
32 |
+
text_tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL_ID)
|
33 |
+
text_model = AutoModelForCausalLM.from_pretrained(
|
34 |
+
TEXT_MODEL_ID,
|
35 |
+
torch_dtype=torch.bfloat16,
|
36 |
+
device_map="auto",
|
37 |
+
quantization_config=quantization_config
|
38 |
+
)
|
39 |
+
|
40 |
+
vision_model = AutoModelForCausalLM.from_pretrained(
|
41 |
+
VISION_MODEL_ID,
|
42 |
+
trust_remote_code=True,
|
43 |
+
torch_dtype="auto",
|
44 |
+
attn_implementation="flash_attention_2"
|
45 |
+
).to(device).eval()
|
46 |
+
|
47 |
+
vision_processor = AutoProcessor.from_pretrained(VISION_MODEL_ID, trust_remote_code=True)
|
48 |
+
|
49 |
+
# Helper functions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
@spaces.GPU
|
51 |
+
def stream_text_chat(message, history, system_prompt, temperature=0.8, max_new_tokens=1024, top_p=1.0, top_k=20):
|
52 |
+
conversation = [{"role": "system", "content": system_prompt}]
|
53 |
+
for prompt, answer in history:
|
54 |
+
conversation.extend([
|
55 |
+
{"role": "user", "content": prompt},
|
56 |
+
{"role": "assistant", "content": answer},
|
57 |
+
])
|
58 |
+
conversation.append({"role": "user", "content": message})
|
59 |
+
|
60 |
+
input_ids = text_tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(text_model.device)
|
61 |
+
streamer = TextIteratorStreamer(text_tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
62 |
+
|
63 |
+
generate_kwargs = dict(
|
64 |
+
input_ids=input_ids,
|
65 |
+
max_new_tokens=max_new_tokens,
|
66 |
+
do_sample=temperature > 0,
|
67 |
+
top_p=top_p,
|
68 |
+
top_k=top_k,
|
69 |
+
temperature=temperature,
|
70 |
+
eos_token_id=[128001, 128008, 128009],
|
71 |
+
streamer=streamer,
|
72 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
with torch.no_grad():
|
75 |
+
thread = Thread(target=text_model.generate, kwargs=generate_kwargs)
|
76 |
+
thread.start()
|
77 |
|
78 |
+
buffer = ""
|
79 |
+
for new_text in streamer:
|
80 |
+
buffer += new_text
|
81 |
+
yield history + [[message, buffer]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
@spaces.GPU # Add this decorator
|
84 |
+
def process_vision_query(image, text_input):
|
85 |
+
prompt = f"<|user|>\n<|image_1|>\n{text_input}<|end|>\n<|assistant|>\n"
|
86 |
+
image = Image.fromarray(image).convert("RGB")
|
87 |
+
inputs = vision_processor(prompt, image, return_tensors="pt").to(device)
|
|
|
88 |
|
89 |
+
with torch.no_grad():
|
90 |
+
generate_ids = vision_model.generate(
|
91 |
+
**inputs,
|
92 |
+
max_new_tokens=1000,
|
93 |
+
eos_token_id=vision_processor.tokenizer.eos_token_id
|
94 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
+
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
97 |
+
response = vision_processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
98 |
+
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
# Custom CSS
|
101 |
custom_css = """
|
102 |
+
body { background-color: #0b0f19; color: #e2e8f0; font-family: 'Arial', sans-serif;}
|
103 |
+
#custom-header { text-align: center; padding: 20px 0; background-color: #1a202c; margin-bottom: 20px; border-radius: 10px;}
|
104 |
+
#custom-header h1 { font-size: 2.5rem; margin-bottom: 0.5rem;}
|
105 |
+
#custom-header h1 .blue { color: #60a5fa;}
|
106 |
+
#custom-header h1 .pink { color: #f472b6;}
|
107 |
+
#custom-header h2 { font-size: 1.5rem; color: #94a3b8;}
|
108 |
+
.suggestions { display: flex; justify-content: center; flex-wrap: wrap; gap: 1rem; margin: 20px 0;}
|
109 |
+
.suggestion { background-color: #1e293b; border-radius: 0.5rem; padding: 1rem; display: flex; align-items: center; transition: transform 0.3s ease; width: 200px;}
|
110 |
+
.suggestion:hover { transform: translateY(-5px);}
|
111 |
+
.suggestion-icon { font-size: 1.5rem; margin-right: 1rem; background-color: #2d3748; padding: 0.5rem; border-radius: 50%;}
|
112 |
+
.gradio-container { max-width: 100% !important;}
|
113 |
+
#component-0, #component-1, #component-2 { max-width: 100% !important;}
|
114 |
+
footer { text-align: center; margin-top: 2rem; color: #64748b;}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
"""
|
116 |
|
117 |
# Custom HTML for the header
|
118 |
custom_header = """
|
119 |
<div id="custom-header">
|
120 |
+
<h1><span class="blue">Phi 3.5</span> <span class="pink">Multimodal Assistant</span></h1>
|
121 |
+
<h2>Text and Vision AI at Your Service</h2>
|
|
|
|
|
|
|
122 |
</div>
|
123 |
"""
|
124 |
|
|
|
126 |
custom_suggestions = """
|
127 |
<div class="suggestions">
|
128 |
<div class="suggestion">
|
129 |
+
<span class="suggestion-icon">💬</span>
|
130 |
+
<p>Chat with the Text Model</p>
|
|
|
|
|
|
|
|
|
131 |
</div>
|
132 |
<div class="suggestion">
|
133 |
<span class="suggestion-icon">🖼️</span>
|
134 |
+
<p>Analyze Images with Vision Model</p>
|
135 |
</div>
|
136 |
<div class="suggestion">
|
137 |
<span class="suggestion-icon">🤖</span>
|
138 |
<p>Get AI-generated responses</p>
|
139 |
</div>
|
140 |
<div class="suggestion">
|
141 |
+
<span class="suggestion-icon">🔍</span>
|
142 |
+
<p>Explore advanced options</p>
|
143 |
</div>
|
144 |
</div>
|
145 |
"""
|
146 |
+
|
147 |
+
# Gradio interface
|
148 |
with gr.Blocks(css=custom_css, theme=gr.themes.Base().set(
|
149 |
body_background_fill="#0b0f19",
|
150 |
body_text_color="#e2e8f0",
|
|
|
153 |
button_primary_text_color="white",
|
154 |
block_title_text_color="#94a3b8",
|
155 |
block_label_text_color="#94a3b8",
|
156 |
+
)) as demo:
|
157 |
gr.HTML(custom_header)
|
158 |
gr.HTML(custom_suggestions)
|
159 |
+
|
160 |
+
with gr.Tab("Text Model (Phi-3.5-mini)"):
|
161 |
+
chatbot = gr.Chatbot(height=400)
|
162 |
+
msg = gr.Textbox(label="Message", placeholder="Type your message here...")
|
163 |
+
with gr.Accordion("Advanced Options", open=False):
|
164 |
+
system_prompt = gr.Textbox(value="You are a helpful assistant", label="System Prompt")
|
165 |
+
temperature = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.8, label="Temperature")
|
166 |
+
max_new_tokens = gr.Slider(minimum=128, maximum=8192, step=1, value=1024, label="Max new tokens")
|
167 |
+
top_p = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="top_p")
|
168 |
+
top_k = gr.Slider(minimum=1, maximum=20, step=1, value=20, label="top_k")
|
169 |
+
|
170 |
+
submit_btn = gr.Button("Submit", variant="primary")
|
171 |
+
clear_btn = gr.Button("Clear Chat", variant="secondary")
|
172 |
+
|
173 |
+
submit_btn.click(stream_text_chat, [msg, chatbot, system_prompt, temperature, max_new_tokens, top_p, top_k], [chatbot])
|
174 |
+
clear_btn.click(lambda: None, None, chatbot, queue=False)
|
175 |
+
|
176 |
+
with gr.Tab("Vision Model (Phi-3.5-vision)"):
|
177 |
+
with gr.Row():
|
178 |
+
with gr.Column(scale=1):
|
179 |
+
vision_input_img = gr.Image(label="Upload an Image", type="pil")
|
180 |
+
vision_text_input = gr.Textbox(label="Ask a question about the image", placeholder="What do you see in this image?")
|
181 |
+
vision_submit_btn = gr.Button("Analyze Image", variant="primary")
|
182 |
+
with gr.Column(scale=1):
|
183 |
+
vision_output_text = gr.Textbox(label="AI Analysis", lines=10)
|
184 |
+
|
185 |
+
vision_submit_btn.click(process_vision_query, [vision_input_img, vision_text_input], [vision_output_text])
|
186 |
+
|
187 |
+
gr.HTML("<footer>Powered by Phi 3.5 Multimodal AI</footer>")
|
188 |
+
|
189 |
+
if __name__ == "__main__":
|
190 |
+
demo.launch()
|