Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,124 +1,348 @@
|
|
1 |
-
|
|
|
|
|
|
|
2 |
import torch
|
3 |
-
|
|
|
|
|
4 |
import gradio as gr
|
5 |
-
from threading import Thread
|
6 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
7 |
import subprocess
|
8 |
-
|
9 |
|
10 |
-
|
|
|
|
|
11 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
12 |
|
13 |
-
#
|
14 |
-
TITLE = "<h1><center>Phi 3.5 Multimodal (Text + Vision)</center></h1>"
|
15 |
-
DESCRIPTION = "# Phi-3.5 Multimodal Demo (Text + Vision)"
|
16 |
-
|
17 |
-
# Model configurations
|
18 |
-
TEXT_MODEL_ID = "microsoft/Phi-3.5-mini-instruct"
|
19 |
-
VISION_MODEL_ID = "microsoft/Phi-3.5-vision-instruct"
|
20 |
-
|
21 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
22 |
-
|
23 |
-
# Quantization config for text model
|
24 |
-
quantization_config = BitsAndBytesConfig(
|
25 |
-
load_in_4bit=True,
|
26 |
-
bnb_4bit_compute_dtype=torch.bfloat16,
|
27 |
-
bnb_4bit_use_double_quant=True,
|
28 |
-
bnb_4bit_quant_type="nf4"
|
29 |
-
)
|
30 |
-
|
31 |
-
# Load models and tokenizers
|
32 |
-
text_tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL_ID)
|
33 |
-
text_model = AutoModelForCausalLM.from_pretrained(
|
34 |
-
TEXT_MODEL_ID,
|
35 |
-
torch_dtype=torch.bfloat16,
|
36 |
-
device_map="auto",
|
37 |
-
quantization_config=quantization_config
|
38 |
-
)
|
39 |
-
|
40 |
-
vision_model = AutoModelForCausalLM.from_pretrained(
|
41 |
-
VISION_MODEL_ID,
|
42 |
-
trust_remote_code=True,
|
43 |
-
torch_dtype="auto",
|
44 |
-
attn_implementation="flash_attention_2"
|
45 |
-
).to(device).eval()
|
46 |
-
|
47 |
-
vision_processor = AutoProcessor.from_pretrained(VISION_MODEL_ID, trust_remote_code=True)
|
48 |
-
|
49 |
-
# Helper functions
|
50 |
@spaces.GPU
|
51 |
-
def
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
eos_token_id=[128001, 128008, 128009],
|
71 |
-
streamer=streamer,
|
72 |
-
)
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
# Custom CSS
|
101 |
custom_css = """
|
102 |
-
body {
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
#custom-header
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
"""
|
116 |
|
117 |
# Custom HTML for the header
|
118 |
custom_header = """
|
119 |
<div id="custom-header">
|
120 |
-
<h1
|
121 |
-
|
|
|
|
|
|
|
122 |
</div>
|
123 |
"""
|
124 |
|
@@ -126,25 +350,28 @@ custom_header = """
|
|
126 |
custom_suggestions = """
|
127 |
<div class="suggestions">
|
128 |
<div class="suggestion">
|
129 |
-
<span class="suggestion-icon"
|
130 |
-
<p>
|
|
|
|
|
|
|
|
|
131 |
</div>
|
132 |
<div class="suggestion">
|
133 |
<span class="suggestion-icon">🖼️</span>
|
134 |
-
<p>
|
135 |
</div>
|
136 |
<div class="suggestion">
|
137 |
<span class="suggestion-icon">🤖</span>
|
138 |
<p>Get AI-generated responses</p>
|
139 |
</div>
|
140 |
<div class="suggestion">
|
141 |
-
<span class="suggestion-icon"
|
142 |
-
<p>
|
143 |
</div>
|
144 |
</div>
|
145 |
"""
|
146 |
-
|
147 |
-
# Gradio interface
|
148 |
with gr.Blocks(css=custom_css, theme=gr.themes.Base().set(
|
149 |
body_background_fill="#0b0f19",
|
150 |
body_text_color="#e2e8f0",
|
@@ -153,38 +380,30 @@ with gr.Blocks(css=custom_css, theme=gr.themes.Base().set(
|
|
153 |
button_primary_text_color="white",
|
154 |
block_title_text_color="#94a3b8",
|
155 |
block_label_text_color="#94a3b8",
|
156 |
-
)) as
|
157 |
gr.HTML(custom_header)
|
158 |
gr.HTML(custom_suggestions)
|
159 |
-
|
160 |
-
with gr.
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
vision_output_text = gr.Textbox(label="AI Analysis", lines=10)
|
184 |
-
|
185 |
-
vision_submit_btn.click(process_vision_query, [vision_input_img, vision_text_input], [vision_output_text])
|
186 |
-
|
187 |
-
gr.HTML("<footer>Powered by Phi 3.5 Multimodal AI</footer>")
|
188 |
-
|
189 |
-
if __name__ == "__main__":
|
190 |
-
demo.launch()
|
|
|
1 |
+
# Import spaces first to avoid CUDA initialization issues
|
2 |
+
import spaces
|
3 |
+
|
4 |
+
# Then import other libraries
|
5 |
import torch
|
6 |
+
import librosa
|
7 |
+
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration, AutoModelForCausalLM, AutoProcessor
|
8 |
+
from gtts import gTTS
|
9 |
import gradio as gr
|
|
|
10 |
from PIL import Image
|
11 |
+
import os
|
12 |
+
import base64
|
13 |
+
from io import BytesIO
|
14 |
+
|
15 |
+
import io
|
16 |
import subprocess
|
17 |
+
from langdetect import detect
|
18 |
|
19 |
+
print("Using GPU for operations when available")
|
20 |
+
|
21 |
+
# Install flash-attn
|
22 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
23 |
|
24 |
+
# Function to safely load pipeline within a GPU-decorated function
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
@spaces.GPU
|
26 |
+
def load_pipeline(model_name, **kwargs):
|
27 |
+
try:
|
28 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
29 |
+
return pipeline(model=model_name, device=device, **kwargs)
|
30 |
+
except Exception as e:
|
31 |
+
print(f"Error loading {model_name} pipeline: {e}")
|
32 |
+
return None
|
33 |
+
|
34 |
+
# Load Whisper model for speech recognition within a GPU-decorated function
|
35 |
+
@spaces.GPU
|
36 |
+
def load_whisper():
|
37 |
+
try:
|
38 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
39 |
+
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
40 |
+
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").to(device)
|
41 |
+
return processor, model
|
42 |
+
except Exception as e:
|
43 |
+
print(f"Error loading Whisper model: {e}")
|
44 |
+
return None, None
|
|
|
|
|
|
|
45 |
|
46 |
+
# Load sarvam-2b for text generation within a GPU-decorated function
|
47 |
+
@spaces.GPU
|
48 |
+
def load_sarvam():
|
49 |
+
return load_pipeline('sarvamai/sarvam-2b-v0.5')
|
50 |
|
51 |
+
# Load Phi-3.5-vision-instruct model
|
52 |
+
@spaces.GPU
|
53 |
+
def load_vision_model():
|
54 |
+
try:
|
55 |
+
model_id = "microsoft/Phi-3.5-vision-instruct"
|
56 |
+
model = AutoModelForCausalLM.from_pretrained(
|
57 |
+
model_id, trust_remote_code=True, torch_dtype=torch.float16, use_flash_attention_2=False
|
58 |
+
)
|
59 |
+
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, num_crops=16)
|
60 |
+
return model, processor
|
61 |
+
except Exception as e:
|
62 |
+
print(f"Error loading vision model: {e}")
|
63 |
+
return None, None
|
64 |
|
65 |
+
|
66 |
+
# Load sarvam-2b for text generation within a GPU-decorated function
|
67 |
+
@spaces.GPU
|
68 |
+
def load_sarvam():
|
69 |
+
return load_pipeline('sarvamai/sarvam-2b-v0.5')
|
70 |
+
|
71 |
+
# Load Phi-3.5-vision-instruct model
|
72 |
+
@spaces.GPU
|
73 |
+
def load_vision_model():
|
74 |
+
try:
|
75 |
+
print("Starting to load vision model...")
|
76 |
+
model_id = "microsoft/Phi-3.5-vision-instruct"
|
77 |
+
print(f"Loading model from {model_id}")
|
78 |
+
|
79 |
+
# Check for CUDA availability
|
80 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
81 |
+
print(f"Using device: {device}")
|
82 |
+
|
83 |
+
# Load model with potential memory optimization
|
84 |
+
model = AutoModelForCausalLM.from_pretrained(
|
85 |
+
model_id,
|
86 |
+
trust_remote_code=True,
|
87 |
+
torch_dtype=torch.float16,
|
88 |
+
use_flash_attention_2=True, # Enable if supported
|
89 |
+
device_map="auto", # Automatically manage model placement
|
90 |
+
low_cpu_mem_usage=True
|
91 |
)
|
92 |
+
print("Model loaded successfully")
|
93 |
+
|
94 |
+
print("Loading processor...")
|
95 |
+
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, num_crops=16)
|
96 |
+
print("Processor loaded successfully")
|
97 |
+
|
98 |
+
return model, processor
|
99 |
+
except ImportError as e:
|
100 |
+
print(f"Error importing required modules: {str(e)}")
|
101 |
+
print("Please ensure all required dependencies are installed.")
|
102 |
+
except RuntimeError as e:
|
103 |
+
print(f"Runtime error (possibly CUDA out of memory): {str(e)}")
|
104 |
+
print("Consider using a smaller model or enabling GPU offloading.")
|
105 |
+
except Exception as e:
|
106 |
+
print(f"Unexpected error in loading vision model: {str(e)}")
|
107 |
+
|
108 |
+
return None, None
|
109 |
+
|
110 |
+
|
111 |
+
# Process audio input within a GPU-decorated function
|
112 |
+
@spaces.GPU
|
113 |
+
def process_audio_input(audio, whisper_processor, whisper_model):
|
114 |
+
if whisper_processor is None or whisper_model is None:
|
115 |
+
return "Error: Speech recognition model is not available. Please type your message instead."
|
116 |
|
117 |
+
try:
|
118 |
+
audio, sr = librosa.load(audio, sr=16000)
|
119 |
+
input_features = whisper_processor(audio, sampling_rate=sr, return_tensors="pt").input_features.to(whisper_model.device)
|
120 |
+
predicted_ids = whisper_model.generate(input_features)
|
121 |
+
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
122 |
+
return transcription
|
123 |
+
except Exception as e:
|
124 |
+
return f"Error processing audio: {str(e)}. Please type your message instead."
|
125 |
+
|
126 |
+
# Updated process_image_input function
|
127 |
+
@spaces.GPU
|
128 |
+
@spaces.GPU
|
129 |
+
def process_image_input(image, text_prompt, vision_model, processor):
|
130 |
+
if vision_model is None or processor is None:
|
131 |
+
return "Error: Vision model is not available."
|
132 |
+
|
133 |
+
try:
|
134 |
+
# Convert image to base64
|
135 |
+
if isinstance(image, Image.Image):
|
136 |
+
buffered = BytesIO()
|
137 |
+
image.save(buffered, format="PNG")
|
138 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
139 |
+
else:
|
140 |
+
# If it's not a PIL Image, assume it's a file path
|
141 |
+
with open(image, "rb") as image_file:
|
142 |
+
img_str = base64.b64encode(image_file.read()).decode()
|
143 |
+
|
144 |
+
# Format the input with image tag
|
145 |
+
formatted_prompt = f"{text_prompt}\n<image>data:image/png;base64,{img_str}</image>"
|
146 |
+
|
147 |
+
# Process the formatted prompt
|
148 |
+
inputs = processor(text=formatted_prompt, return_tensors="pt").to(vision_model.device)
|
149 |
+
|
150 |
+
# Generate text
|
151 |
+
with torch.no_grad():
|
152 |
+
outputs = vision_model.generate(
|
153 |
+
**inputs,
|
154 |
+
max_new_tokens=100,
|
155 |
+
do_sample=True,
|
156 |
+
top_k=50,
|
157 |
+
top_p=0.95,
|
158 |
+
num_return_sequences=1
|
159 |
+
)
|
160 |
+
|
161 |
+
generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
162 |
+
return generated_text
|
163 |
+
except Exception as e:
|
164 |
+
return f"Error processing image: {str(e)}"
|
165 |
+
|
166 |
+
# Generate response within a GPU-decorated function
|
167 |
+
@spaces.GPU
|
168 |
+
def generate_response(transcription, sarvam_pipe):
|
169 |
+
if sarvam_pipe is None:
|
170 |
+
return "Error: Text generation model is not available."
|
171 |
+
|
172 |
+
try:
|
173 |
+
# Generate response using the sarvam-2b model
|
174 |
+
response = sarvam_pipe(transcription, max_length=100, num_return_sequences=1)[0]['generated_text']
|
175 |
+
return response
|
176 |
+
except Exception as e:
|
177 |
+
return f"Error generating response: {str(e)}"
|
178 |
+
|
179 |
+
# Text-to-speech function
|
180 |
+
def text_to_speech(text, lang='hi'):
|
181 |
+
try:
|
182 |
+
# Use a better TTS engine for Indic languages
|
183 |
+
if lang in ['hi', 'bn', 'gu', 'kn', 'ml', 'mr', 'or', 'pa', 'ta', 'te']:
|
184 |
+
# You might want to use a different TTS library here
|
185 |
+
# For example, you could use the Google Cloud Text-to-Speech API
|
186 |
+
# or a specialized Indic language TTS library
|
187 |
+
|
188 |
+
# This is a placeholder for a better Indic TTS solution
|
189 |
+
tts = gTTS(text=text, lang=lang, tld='co.in') # Use Indian TLD
|
190 |
+
else:
|
191 |
+
tts = gTTS(text=text, lang=lang)
|
192 |
+
|
193 |
+
tts.save("response.mp3")
|
194 |
+
return "response.mp3"
|
195 |
+
except Exception as e:
|
196 |
+
print(f"Error in text-to-speech: {str(e)}")
|
197 |
+
return None
|
198 |
+
|
199 |
+
# Improved language detection function
|
200 |
+
def detect_language(text):
|
201 |
+
lang_codes = {
|
202 |
+
'bn': 'Bengali', 'gu': 'Gujarati', 'hi': 'Hindi', 'kn': 'Kannada',
|
203 |
+
'ml': 'Malayalam', 'mr': 'Marathi', 'or': 'Oriya', 'pa': 'Punjabi',
|
204 |
+
'ta': 'Tamil', 'te': 'Telugu', 'en': 'English'
|
205 |
+
}
|
206 |
+
|
207 |
+
try:
|
208 |
+
detected_lang = detect(text)
|
209 |
+
return detected_lang if detected_lang in lang_codes else 'en'
|
210 |
+
except:
|
211 |
+
# Fallback to simple script-based detection
|
212 |
+
for code, lang in lang_codes.items():
|
213 |
+
if any(ord(char) >= 0x0900 and ord(char) <= 0x097F for char in text): # Devanagari script
|
214 |
+
return 'hi'
|
215 |
+
return 'en' # Default to English if no Indic script is detected
|
216 |
+
|
217 |
+
@spaces.GPU
|
218 |
+
def indic_vision_assistant(input_type, audio_input, text_input, image_input):
|
219 |
+
try:
|
220 |
+
whisper_processor, whisper_model = load_whisper()
|
221 |
+
sarvam_pipe = load_sarvam()
|
222 |
+
vision_model, processor = load_vision_model()
|
223 |
+
|
224 |
+
if input_type == "audio" and audio_input is not None:
|
225 |
+
transcription = process_audio_input(audio_input, whisper_processor, whisper_model)
|
226 |
+
elif input_type == "text" and text_input:
|
227 |
+
transcription = text_input
|
228 |
+
elif input_type == "image" and image_input is not None:
|
229 |
+
# Use a default prompt if no text input is provided
|
230 |
+
text_prompt = text_input if text_input else "Describe this image in detail."
|
231 |
+
transcription = process_image_input(image_input, text_prompt, vision_model, processor)
|
232 |
+
else:
|
233 |
+
return "Please provide either audio, text, or image input.", "No input provided.", None
|
234 |
+
|
235 |
+
response = generate_response(transcription, sarvam_pipe)
|
236 |
+
lang = detect_language(response)
|
237 |
+
audio_response = text_to_speech(response, lang)
|
238 |
+
|
239 |
+
return transcription, response, audio_response
|
240 |
+
except Exception as e:
|
241 |
+
error_message = f"An error occurred: {str(e)}"
|
242 |
+
return error_message, error_message, None
|
243 |
+
|
244 |
|
245 |
# Custom CSS
|
246 |
custom_css = """
|
247 |
+
body {
|
248 |
+
background-color: #0b0f19;
|
249 |
+
color: #e2e8f0;
|
250 |
+
font-family: 'Arial', sans-serif;
|
251 |
+
}
|
252 |
+
#custom-header {
|
253 |
+
text-align: center;
|
254 |
+
padding: 20px 0;
|
255 |
+
background-color: #1a202c;
|
256 |
+
margin-bottom: 20px;
|
257 |
+
border-radius: 10px;
|
258 |
+
}
|
259 |
+
#custom-header h1 {
|
260 |
+
font-size: 2.5rem;
|
261 |
+
margin-bottom: 0.5rem;
|
262 |
+
}
|
263 |
+
#custom-header h1 .blue {
|
264 |
+
color: #60a5fa;
|
265 |
+
}
|
266 |
+
#custom-header h1 .pink {
|
267 |
+
color: #f472b6;
|
268 |
+
}
|
269 |
+
#custom-header h2 {@spaces.GPU
|
270 |
+
def indic_vision_assistant(input_type, audio_input, text_input, image_input):
|
271 |
+
try:
|
272 |
+
whisper_processor, whisper_model = load_whisper()
|
273 |
+
sarvam_pipe = load_sarvam()
|
274 |
+
vision_model, processor = load_vision_model()
|
275 |
+
|
276 |
+
if input_type == "audio" and audio_input is not None:
|
277 |
+
transcription = process_audio_input(audio_input, whisper_processor, whisper_model)
|
278 |
+
elif input_type == "text" and text_input:
|
279 |
+
transcription = text_input
|
280 |
+
elif input_type == "image" and image_input is not None:
|
281 |
+
# Use a default prompt if no text input is provided
|
282 |
+
text_prompt = text_input if text_input else "Describe this image in detail."
|
283 |
+
transcription = process_image_input(image_input, text_prompt, vision_model, processor)
|
284 |
+
else:
|
285 |
+
return "Please provide either audio, text, or image input.", "No input provided.", None
|
286 |
+
|
287 |
+
response = generate_response(transcription, sarvam_pipe)
|
288 |
+
lang = detect_language(response)
|
289 |
+
audio_response = text_to_speech(response, lang)
|
290 |
+
|
291 |
+
return transcription, response, audio_response
|
292 |
+
except Exception as e:
|
293 |
+
error_message = f"An error occurred: {str(e)}"
|
294 |
+
return error_message, error_message, None
|
295 |
+
|
296 |
+
font-size: 1.5rem;
|
297 |
+
color: #94a3b8;
|
298 |
+
}
|
299 |
+
.suggestions {
|
300 |
+
display: flex;
|
301 |
+
justify-content: center;
|
302 |
+
flex-wrap: wrap;
|
303 |
+
gap: 1rem;
|
304 |
+
margin: 20px 0;
|
305 |
+
}
|
306 |
+
.suggestion {
|
307 |
+
background-color: #1e293b;
|
308 |
+
border-radius: 0.5rem;
|
309 |
+
padding: 1rem;
|
310 |
+
display: flex;
|
311 |
+
align-items: center;
|
312 |
+
transition: transform 0.3s ease;
|
313 |
+
width: 200px;
|
314 |
+
}
|
315 |
+
.suggestion:hover {
|
316 |
+
transform: translateY(-5px);
|
317 |
+
}
|
318 |
+
.suggestion-icon {
|
319 |
+
font-size: 1.5rem;
|
320 |
+
margin-right: 1rem;
|
321 |
+
background-color: #2d3748;
|
322 |
+
padding: 0.5rem;
|
323 |
+
border-radius: 50%;
|
324 |
+
}
|
325 |
+
.gradio-container {
|
326 |
+
max-width: 100% !important;
|
327 |
+
}
|
328 |
+
#component-0, #component-1, #component-2 {
|
329 |
+
max-width: 100% !important;
|
330 |
+
}
|
331 |
+
footer {
|
332 |
+
text-align: center;
|
333 |
+
margin-top: 2rem;
|
334 |
+
color: #64748b;
|
335 |
+
}
|
336 |
"""
|
337 |
|
338 |
# Custom HTML for the header
|
339 |
custom_header = """
|
340 |
<div id="custom-header">
|
341 |
+
<h1>
|
342 |
+
<span class="blue">Hello,</span>
|
343 |
+
<span class="pink">User</span>
|
344 |
+
</h1>
|
345 |
+
<h2>How can I help you today?</h2>
|
346 |
</div>
|
347 |
"""
|
348 |
|
|
|
350 |
custom_suggestions = """
|
351 |
<div class="suggestions">
|
352 |
<div class="suggestion">
|
353 |
+
<span class="suggestion-icon">🎤</span>
|
354 |
+
<p>Speak in any Indic language</p>
|
355 |
+
</div>
|
356 |
+
<div class="suggestion">
|
357 |
+
<span class="suggestion-icon">⌨️</span>
|
358 |
+
<p>Type in any Indic language</p>
|
359 |
</div>
|
360 |
<div class="suggestion">
|
361 |
<span class="suggestion-icon">🖼️</span>
|
362 |
+
<p>Upload an image for analysis</p>
|
363 |
</div>
|
364 |
<div class="suggestion">
|
365 |
<span class="suggestion-icon">🤖</span>
|
366 |
<p>Get AI-generated responses</p>
|
367 |
</div>
|
368 |
<div class="suggestion">
|
369 |
+
<span class="suggestion-icon">🔊</span>
|
370 |
+
<p>Listen to audio responses</p>
|
371 |
</div>
|
372 |
</div>
|
373 |
"""
|
374 |
+
# Update the Gradio interface to allow text input for image processing
|
|
|
375 |
with gr.Blocks(css=custom_css, theme=gr.themes.Base().set(
|
376 |
body_background_fill="#0b0f19",
|
377 |
body_text_color="#e2e8f0",
|
|
|
380 |
button_primary_text_color="white",
|
381 |
block_title_text_color="#94a3b8",
|
382 |
block_label_text_color="#94a3b8",
|
383 |
+
)) as iface:
|
384 |
gr.HTML(custom_header)
|
385 |
gr.HTML(custom_suggestions)
|
386 |
+
|
387 |
+
with gr.Row():
|
388 |
+
with gr.Column(scale=1):
|
389 |
+
gr.Markdown("### Indic Vision Assistant")
|
390 |
+
|
391 |
+
input_type = gr.Radio(["audio", "text", "image"], label="Input Type", value="audio")
|
392 |
+
audio_input = gr.Audio(type="filepath", label="Speak (if audio input selected)")
|
393 |
+
text_input = gr.Textbox(label="Type your message or image prompt")
|
394 |
+
image_input = gr.Image(type="pil", label="Upload an image (if image input selected)")
|
395 |
+
|
396 |
+
submit_btn = gr.Button("Submit")
|
397 |
+
|
398 |
+
output_transcription = gr.Textbox(label="Transcription/Input")
|
399 |
+
output_response = gr.Textbox(label="Generated Response")
|
400 |
+
output_audio = gr.Audio(label="Audio Response")
|
401 |
+
|
402 |
+
submit_btn.click(
|
403 |
+
fn=indic_vision_assistant,
|
404 |
+
inputs=[input_type, audio_input, text_input, image_input],
|
405 |
+
outputs=[output_transcription, output_response, output_audio]
|
406 |
+
)
|
407 |
+
gr.HTML("<footer>Powered by Indic Language AI with Vision Capabilities</footer>")
|
408 |
+
# Launch the app
|
409 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|