File size: 5,949 Bytes
93a77af
178b187
 
33e1d55
9329e39
 
 
 
178b187
 
9329e39
 
 
 
 
 
 
 
 
 
 
 
 
93a77af
 
9329e39
4d6e83e
 
 
33e1d55
9329e39
 
4d6e83e
9329e39
 
 
 
 
 
 
 
 
4d6e83e
 
9329e39
 
 
 
aad23a2
4d6e83e
 
 
93a77af
178b187
64c1665
 
 
 
 
 
 
178b187
 
9329e39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93a77af
 
 
 
c998ccf
 
93a77af
 
 
8f7fecd
 
 
 
 
9329e39
8f7fecd
 
 
 
 
 
 
 
f01f3e2
93a77af
 
 
 
178b187
93a77af
7f1194a
93a77af
8f7fecd
93a77af
 
 
 
 
 
 
 
 
 
 
8f7fecd
93a77af
f01f3e2
 
 
9329e39
8f7fecd
f01f3e2
 
 
 
 
93a77af
 
 
 
 
 
 
 
8f7fecd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import gradio as gr
import sys
import random
import os
import pandas as pd
import torch
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
sys.path.append("scripts/")
from foldseek_util import get_struc_seq
from utils import seed_everything
from models import PLTNUM_PreTrainedModel
from datasets import PLTNUMDataset

class Config:
    batch_size = 2
    use_amp = False
    num_workers = 1
    max_length = 512
    used_sequence = "left"
    padding_side = "right"
    task = "classification"
    sequence_col = "sequence"

# Assuming 'predict_stability' is your function that predicts protein stability
def predict_stability(cfg, model_choice, organism_choice, pdb_file=None, sequence=None):
    # Check if pdb_file is provided
    if pdb_file:
        pdb_path = pdb_file.name  # Get the path of the uploaded PDB file
        os.system("chmod 777 bin/foldseek")
        sequences = get_foldseek_seq(pdb_path)
        if not sequences:
            return "Failed to extract sequence from the PDB file."
        if model_choice == "SaProt":
            sequence = sequences[2]
        else:
            sequence = sequences[0]

    if organism_choice == "Human":
        cell_line = "HeLa"
    else:
        cell_line = "NIH3T3"
    # If sequence is provided directly
    if sequence:
        cfg.model = f"sagawa/PLTNUM-{model_choice}-{cell_line}"
        cfg.architecture = model_choice
        cfg.model_path = f"sagawa/PLTNUM-{model_choice}-{cell_line}"
        output = predict(cfg, sequence)
        return f"Predicted Stability using {model_choice} for {organism_choice}: Example Output with sequence {output}..."
    else:
        return "No valid input provided."
    

def get_foldseek_seq(pdb_path):
    parsed_seqs = get_struc_seq(
        "bin/foldseek",
        pdb_path,
        ["A"],
        process_id=random.randint(0, 10000000),
    )["A"]
    return parsed_seqs


def predict(cfg, sequence):
    cfg.token_length = 2 if cfg.architecture == "SaProt" else 1
    cfg.device = "cuda" if torch.cuda.is_available() else "cpu"

    if cfg.used_sequence == "both":
        cfg.max_length += 1

    seed_everything(cfg.seed)

    df = pd.DataFrame({cfg.sequence_col: [sequence]})

    tokenizer = AutoTokenizer.from_pretrained(
        cfg.model_path, padding_side=cfg.padding_side
    )
    cfg.tokenizer = tokenizer

    dataset = PLTNUMDataset(cfg, df, train=False)
    dataloader = DataLoader(
        dataset,
        batch_size=cfg.batch_size,
        shuffle=False,
        num_workers=cfg.num_workers,
        pin_memory=True,
        drop_last=False,
    )

    model = PLTNUM_PreTrainedModel.from_pretrained(cfg.model_path, cfg=cfg)
    model.to(cfg.device)

    # predictions = predict_fn(loader, model, cfg)
    model.eval()
    predictions = []

    for inputs, _ in dataloader:
        inputs = inputs.to(cfg.device)
        with torch.no_grad():
            with torch.amp.autocast(enabled=cfg.use_amp):
                preds = (
                    torch.sigmoid(model(inputs))
                    if cfg.task == "classification"
                    else model(inputs)
                )
        predictions += preds.cpu().tolist()
    outputs = {}
    outputs["raw prediction values"] = predictions
    outputs["binary prediction values"] = [1 if x > 0.5 else 0 for x in predictions]
    return outputs   



# Gradio Interface
with gr.Blocks() as demo:
    gr.Markdown(
        """
        # PLTNUM: Protein LifeTime Neural Model
        **Predict the protein half-life from its sequence or PDB file.**
        """
    )
    
    gr.Image("https://github.com/sagawatatsuya/PLTNUM/blob/main/model-image.png?raw=true", label="Model Image")

    # Model and Organism selection in the same row to avoid layout issues
    with gr.Row():
        model_choice = gr.Radio(
            choices=["SaProt", "ESM2"], 
            label="Select PLTNUM's base model.", 
            value="SaProt"
        )
        organism_choice = gr.Radio(
            choices=["Mouse", "Human"], 
            label="Select the target organism.", 
            value="Mouse"
        )
    
    with gr.Tabs():
        with gr.TabItem("Upload PDB File"):
            gr.Markdown("### Upload your PDB file:")
            pdb_file = gr.File(label="Upload PDB File")
            
            predict_button = gr.Button("Predict Stability")
            prediction_output = gr.Textbox(label="Stability Prediction", interactive=False)

            predict_button.click(fn=predict_stability, inputs=[model_choice, organism_choice, pdb_file], outputs=prediction_output)
        
        with gr.TabItem("Enter Protein Sequence"):
            gr.Markdown("### Enter the protein sequence:")
            sequence = gr.Textbox(
                label="Protein Sequence",
                placeholder="Enter your protein sequence here...",
                lines=8,
            )
            predict_button = gr.Button("Predict Stability")
            prediction_output = gr.Textbox(label="Stability Prediction", interactive=False)

            predict_button.click(fn=predict_stability, inputs=[model_choice, organism_choice, sequence], outputs=prediction_output)
    
    gr.Markdown(
        """
        ### How to Use:
        - **Select Model**: Choose between 'SaProt' or 'ESM2' for your prediction.
        - **Select Organism**: Choose between 'Mouse' or 'Human'.
        - **Upload PDB File**: Choose the 'Upload PDB File' tab and upload your file.
        - **Enter Sequence**: Alternatively, switch to the 'Enter Protein Sequence' tab and input your sequence.
        - **Predict**: Click 'Predict Stability' to receive the prediction.
        """
    )
    
    gr.Markdown(
        """
        ### About the Tool
        This tool allows researchers and scientists to predict the stability of proteins using advanced algorithms. It supports both PDB file uploads and direct sequence input.
        """
    )

demo.launch()