File size: 9,880 Bytes
f0bbe14
178b187
 
33e1d55
9329e39
 
e4d81ca
9329e39
 
93d358b
a418c62
2683162
ef0bf75
93d358b
ef0bf75
f717639
ef0bf75
9329e39
 
3bb8b09
 
 
 
 
 
 
 
 
 
93d358b
3bb8b09
 
1d7f8f6
aa82e0a
1d7f8f6
 
 
 
42d0bd4
7cee862
42d0bd4
20c06cf
946fcbf
1d7f8f6
946fcbf
 
1d7f8f6
946fcbf
 
 
 
 
1d7f8f6
7cee862
946fcbf
1d7f8f6
482be2c
1d7f8f6
 
 
20c06cf
 
 
 
 
a668d8b
1d7f8f6
a668d8b
1d7f8f6
 
 
 
946fcbf
 
 
1d7f8f6
a668d8b
 
 
 
42d0bd4
a668d8b
 
 
 
 
42d0bd4
a668d8b
3bb8b09
93a77af
178b187
64c1665
 
 
 
 
 
 
178b187
 
42d0bd4
9329e39
 
 
 
 
 
 
42d0bd4
9329e39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d7f8f6
 
 
e4d81ca
9329e39
 
 
 
 
4cbe855
3bb8b09
e4d81ca
1d7f8f6
42d0bd4
9329e39
f0bbe14
93d358b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77582ad
 
 
 
93d358b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0bbe14
 
 
 
 
 
 
 
 
 
f081356
f0bbe14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa82e0a
 
f0bbe14
1d7f8f6
 
 
f0bbe14
 
a668d8b
aa82e0a
f0bbe14
 
 
93d358b
 
 
 
 
 
 
 
 
 
 
f0bbe14
 
 
 
 
 
 
 
1d7f8f6
 
 
f0bbe14
 
a668d8b
 
f0bbe14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import gradio as gr
import sys
import random
import os
import pandas as pd
import torch
import itertools
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
import shap

sys.path.append("scripts/")
from foldseek_util import get_struc_seq
from utils import seed_everything, save_pickle
from models import PLTNUM_PreTrainedModel
from datasets_ import PLTNUMDataset


class Config:
    def __init__(self):
        self.batch_size = 2
        self.use_amp = False
        self.num_workers = 1
        self.max_length = 512
        self.used_sequence = "left"
        self.padding_side = "right"
        self.task = "classification"
        self.sequence_col = "sequence"
        self.seed = 42
        self.max_evals = 10



def predict_stability_with_pdb(model_choice, organism_choice, pdb_files, cfg=Config()):
    results = {"file_name": [],
               "raw prediction value": [],
               "binary prediction value": []
               }
    file_names = []
    input_sequences = []

    for pdb_file in pdb_files:
        pdb_path = pdb_file.name
        os.system("chmod 777 bin/foldseek")
        sequences = get_foldseek_seq(pdb_path)
        if not sequences:
            results["file_name"].append(pdb_file.name.split("/")[-1])
            results["raw prediction value"].append(None)
            results["binary prediction value"].append(None)
            continue

        sequence = sequences[2] if model_choice == "SaProt" else sequences[0]
        file_names.append(pdb_file.name.split("/")[-1])
        input_sequences.append(sequence)

    raw_prediction, binary_prediction = predict_stability_core(model_choice, organism_choice, input_sequences, cfg)
    results["file_name"] = results["file_name"] + file_names
    results["raw prediction value"] = results["raw prediction value"] + raw_prediction
    results["binary prediction value"] = results["binary prediction value"] + binary_prediction
            
    df = pd.DataFrame(results)
    output_csv = "/tmp/predictions.csv"
    df.to_csv(output_csv, index=False)

    return output_csv

def predict_stability_with_sequence(model_choice, organism_choice, sequence, cfg=Config()):
    try:
        if not sequence:
            return "No valid sequence provided."
        raw_prediction, binary_prediction = predict_stability_core(model_choice, organism_choice, [sequence], cfg)
        df = pd.DataFrame({"sequence": sequence, "raw prediction value": raw_prediction, "binary prediction value": binary_prediction})
        output_csv = "/tmp/predictions.csv"
        df.to_csv(output_csv, index=False)

        return output_csv 
    except Exception as e:
        return f"An error occurred: {str(e)}"


def predict_stability_core(model_choice, organism_choice, sequences, cfg=Config()):
    cell_line = "HeLa" if organism_choice == "Human" else "NIH3T3"
    cfg.model = f"sagawa/PLTNUM-{model_choice}-{cell_line}"
    cfg.architecture = model_choice
    cfg.model_path = f"sagawa/PLTNUM-{model_choice}-{cell_line}"

    output = predict(cfg, sequences)
    return output


def get_foldseek_seq(pdb_path):
    parsed_seqs = get_struc_seq(
        "bin/foldseek",
        pdb_path,
        ["A"],
        process_id=random.randint(0, 10000000),
    )["A"]
    return parsed_seqs


def predict(cfg, sequences):
    cfg.token_length = 2 if cfg.architecture == "SaProt" else 1
    cfg.device = "cuda" if torch.cuda.is_available() else "cpu"

    if cfg.used_sequence == "both":
        cfg.max_length += 1

    seed_everything(cfg.seed)
    df = pd.DataFrame({cfg.sequence_col: sequences})

    tokenizer = AutoTokenizer.from_pretrained(
        cfg.model_path, padding_side=cfg.padding_side
    )
    cfg.tokenizer = tokenizer
    dataset = PLTNUMDataset(cfg, df, train=False)
    dataloader = DataLoader(
        dataset,
        batch_size=cfg.batch_size,
        shuffle=False,
        num_workers=cfg.num_workers,
        pin_memory=True,
        drop_last=False,
    )

    model = PLTNUM_PreTrainedModel.from_pretrained(cfg.model_path, cfg=cfg)
    model.to(cfg.device)

    model.eval()
    predictions = []

    for inputs, _ in dataloader:
        inputs = inputs.to(cfg.device)
        with torch.no_grad():
            with torch.amp.autocast(cfg.device, enabled=cfg.use_amp):
                preds = (
                    torch.sigmoid(model(inputs))
                    if cfg.task == "classification"
                    else model(inputs)
                )
        predictions += preds.cpu().tolist()

    predictions = list(itertools.chain.from_iterable(predictions))
    
    return predictions, [1 if x > 0.5 else 0 for x in predictions]



def calculate_shap_values_with_pdb(model_choice, organism_choice, pdb_files, cfg=Config()):
    input_sequences = []

    for pdb_file in pdb_files:
        pdb_path = pdb_file.name
        os.system("chmod 777 bin/foldseek")
        sequences = get_foldseek_seq(pdb_path)
        sequence = sequences[2] if model_choice == "SaProt" else sequences[0]
        input_sequences.append(sequence)

    shap_values = calculate_shap_values_core(model_choice, organism_choice, input_sequences, cfg)

    output_path = "/tmp/shap_values.pkl"
    save_pickle(
        output_path, shap_values
    )

    return output_path


def calculate_shap_fn(texts, model, cfg):
    if len(texts) == 1:
        texts = texts[0]
    else:
        texts = texts.tolist()

    inputs = cfg.tokenizer(
        texts,
        return_tensors="pt",
        padding=True,
        truncation=True,
        max_length=cfg.max_length,
    )
    inputs = {k: v.to(cfg.device) for k, v in inputs.items()}
    with torch.no_grad():
        outputs = model(inputs)
        outputs = torch.sigmoid(outputs).detach().cpu().numpy()
    return outputs


def calculate_shap_values_core(model_choice, organism_choice, sequences, cfg=Config()):
    cell_line = "HeLa" if organism_choice == "Human" else "NIH3T3"
    cfg.model = f"sagawa/PLTNUM-{model_choice}-{cell_line}"
    cfg.architecture = model_choice
    cfg.model_path = f"sagawa/PLTNUM-{model_choice}-{cell_line}"
    cfg.device = "cuda" if torch.cuda.is_available() else "cpu"

    seed_everything(cfg.seed)
    tokenizer = AutoTokenizer.from_pretrained(
        cfg.model_path, padding_side=cfg.padding_side
    )
    cfg.tokenizer = tokenizer

    model = PLTNUM_PreTrainedModel.from_pretrained(cfg.model_path, cfg=cfg).to(cfg.device)
    model.eval()

    # build an explainer using a token masker
    explainer = shap.Explainer(lambda x: calculate_shap_fn(x, model, cfg), cfg.tokenizer)

    shap_values = explainer(
        sequences,
        batch_size=cfg.batch_size,
        max_evals=cfg.max_evals,
    )

    return shap_values


# Gradio Interface
with gr.Blocks() as demo:
    gr.Markdown(
        """
        # PLTNUM: Protein LifeTime Neural Model
        **Predict the protein half-life from its sequence or PDB file.**
        """
    )

    gr.Image(
        "https://raw.githubusercontent.com/sagawatatsuya/PLTNUM/main/model-image.png",
        label="Model Image",
    )

    # Model and Organism selection in the same row to avoid layout issues
    with gr.Row():
        model_choice = gr.Radio(
            choices=["SaProt", "ESM2"],
            label="Select PLTNUM's base model.",
            value="SaProt",
        )
        organism_choice = gr.Radio(
            choices=["Mouse", "Human"],
            label="Select the target organism.",
            value="Mouse",
        )

    with gr.Tabs():
        with gr.TabItem("Upload PDB File"):
            gr.Markdown("### Upload your PDB files:")
            pdb_files = gr.File(label="Upload PDB Files", file_count="multiple")
            predict_button = gr.Button("Predict Stability")
            prediction_output = gr.File(
                label="Download Predictions"
            )

            predict_button.click(
                fn=predict_stability_with_pdb,
                inputs=[model_choice, organism_choice, pdb_files],
                outputs=prediction_output,
            )

            calculate_shap_values_button = gr.Button("Calculate SHAP Values")
            shap_values_output = gr.File(
                label="Download SHAP Values"
            )
            calculate_shap_values_button.click(
                fn=calculate_shap_values_with_pdb,
                inputs=[model_choice, organism_choice, pdb_files],
                outputs=shap_values_output,
            )


        with gr.TabItem("Enter Protein Sequence"):
            gr.Markdown("### Enter the protein sequence:")
            sequence = gr.Textbox(
                label="Protein Sequence",
                placeholder="Enter your protein sequence here...",
                lines=8,
            )
            predict_button = gr.Button("Predict Stability")
            prediction_output = gr.File(
                label="Download Predictions"
            )

            predict_button.click(
                fn=predict_stability_with_sequence,
                inputs=[model_choice, organism_choice, sequence],
                outputs=prediction_output,
            )

    gr.Markdown(
        """
        ### How to Use:
        - **Select Model**: Choose between 'SaProt' or 'ESM2' for your prediction.
        - **Select Organism**: Choose between 'Mouse' or 'Human'.
        - **Upload PDB File**: Choose the 'Upload PDB File' tab and upload your file.
        - **Enter Sequence**: Alternatively, switch to the 'Enter Protein Sequence' tab and input your sequence.
        - **Predict**: Click 'Predict Stability' to receive the prediction.
        """
    )

    gr.Markdown(
        """
        ### About the Tool
        This tool allows researchers and scientists to predict the stability of proteins using advanced algorithms. It supports both PDB file uploads and direct sequence input.
        """
    )

demo.launch()