Files changed (3) hide show
  1. README.md +0 -1
  2. app.py +3 -32
  3. requirements.txt +1 -3
README.md CHANGED
@@ -8,7 +8,6 @@ sdk_version: 1.24.0
8
  app_file: app.py
9
  pinned: false
10
  license: mit
11
- python_version: 3.9.13
12
  ---
13
 
14
  The space of arxiv.org/abs/2307.13269.
 
8
  app_file: app.py
9
  pinned: false
10
  license: mit
 
11
  ---
12
 
13
  The space of arxiv.org/abs/2307.13269.
app.py CHANGED
@@ -12,12 +12,6 @@ import torch
12
  import shutil
13
  import os
14
  import uuid
15
- import json
16
-
17
-
18
- from google.oauth2 import service_account
19
- import gspread
20
- from google.oauth2.service_account import Credentials
21
 
22
 
23
  css = """
@@ -27,6 +21,7 @@ css = """
27
  """
28
  st.markdown(css, unsafe_allow_html=True)
29
 
 
30
  def main():
31
  st.title("πŸ’‘ LoraHub")
32
  st.markdown("Low-rank adaptations (LoRA) are techniques for fine-tuning large language models on new tasks. We propose LoraHub, a framework that allows composing multiple LoRA modules trained on different tasks. The goal is to achieve good performance on unseen tasks using just a few examples, without needing extra parameters or training. And we want to build a marketplace where users can share their trained LoRA modules, thereby facilitating the application of these modules to new tasks.")
@@ -110,28 +105,12 @@ Infer the date from context. Q: Today is the second day of the third month of 1
110
  txt_input, txt_output, max_inference_step=max_step)
111
 
112
  st.success("Lorahub learning finished! You got the following recommendation:")
113
-
114
  df = {
115
  "modules": [LORA_HUB_NAMES[i] for i in st.session_state["select_names"]],
116
  "weights": recommendation.value,
117
  }
118
-
119
-
120
-
121
- def share():
122
- credentials = service_account.Credentials.from_service_account_info(
123
- json.loads(st.secrets["gcp_service_account"]),
124
- scopes=[
125
- "https://www.googleapis.com/auth/spreadsheets",
126
- ]
127
- )
128
- gsheet_url = st.secrets["private_gsheets_url"]
129
- gc = gspread.authorize(credentials)
130
- sh = gc.open_by_url(gsheet_url)
131
-
132
- ws = sh.sheet1
133
- ws.insert_rows([[LORA_HUB_NAMES[i] for i in st.session_state["select_names"]],recommendation.value.tolist(),[max_step]])
134
  st.table(df)
 
135
  random_id = uuid.uuid4().hex
136
  os.makedirs(f"lora/{random_id}")
137
  # copy config file
@@ -147,15 +126,7 @@ Infer the date from context. Q: Today is the second day of the third month of 1
147
  file_name=f"lora_{random_id}.zip",
148
  mime="application/zip"
149
  )
150
- with open(f"lora_{random_id}.zip", "rb") as fp:
151
- btn = st.download_button(
152
- label="πŸ“₯ Download and share your results",
153
- data=fp,
154
- file_name=f"lora_{random_id}.zip",
155
- mime="application/zip",
156
- on_click=share
157
- )
158
- st.warning("The page will be refreshed once you click the download button. Share results may cost 1-2 mins.")
159
 
160
 
161
 
 
12
  import shutil
13
  import os
14
  import uuid
 
 
 
 
 
 
15
 
16
 
17
  css = """
 
21
  """
22
  st.markdown(css, unsafe_allow_html=True)
23
 
24
+
25
  def main():
26
  st.title("πŸ’‘ LoraHub")
27
  st.markdown("Low-rank adaptations (LoRA) are techniques for fine-tuning large language models on new tasks. We propose LoraHub, a framework that allows composing multiple LoRA modules trained on different tasks. The goal is to achieve good performance on unseen tasks using just a few examples, without needing extra parameters or training. And we want to build a marketplace where users can share their trained LoRA modules, thereby facilitating the application of these modules to new tasks.")
 
105
  txt_input, txt_output, max_inference_step=max_step)
106
 
107
  st.success("Lorahub learning finished! You got the following recommendation:")
 
108
  df = {
109
  "modules": [LORA_HUB_NAMES[i] for i in st.session_state["select_names"]],
110
  "weights": recommendation.value,
111
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112
  st.table(df)
113
+
114
  random_id = uuid.uuid4().hex
115
  os.makedirs(f"lora/{random_id}")
116
  # copy config file
 
126
  file_name=f"lora_{random_id}.zip",
127
  mime="application/zip"
128
  )
129
+ st.warning("The page will be refreshed once you click the download button.")
 
 
 
 
 
 
 
 
130
 
131
 
132
 
requirements.txt CHANGED
@@ -1,6 +1,4 @@
1
  peft
2
  transformers
3
  pandas
4
- nevergrad
5
- gspread
6
- google
 
1
  peft
2
  transformers
3
  pandas
4
+ nevergrad