sairamn commited on
Commit
239462d
1 Parent(s): c165793

Added v2 Code to tree main

Browse files
Files changed (2) hide show
  1. app.py +9 -6
  2. requirements.txt +6 -6
app.py CHANGED
@@ -1,7 +1,7 @@
1
  import gradio as gr
2
  from huggingface_hub import hf_hub_download
3
  from langchain_community.vectorstores import FAISS
4
- from langchain_community.embeddings import HuggingFaceEmbeddings
5
  from langchain.prompts import PromptTemplate
6
  from langchain_together import Together
7
 
@@ -31,7 +31,7 @@ ANSWER:
31
  prompt = PromptTemplate(template=prompt_template, input_variables=['context', 'question', 'chat_history'])
32
 
33
  # Set up Together API
34
- TOGETHER_AI_API = "66bd7a6dc11956ddb311b773c0deabda8870e8c90e9f548ce064880ac47c4b05" # Replace this with your actual API key
35
 
36
  llm = Together(
37
  model="mistralai/Mistral-7B-Instruct-v0.2",
@@ -41,7 +41,7 @@ llm = Together(
41
  )
42
 
43
  # Create a function to process user input and generate responses
44
- def ask_question(user_question):
45
  # Retrieve relevant documents
46
  context_docs = db_retriever.get_relevant_documents(user_question)
47
 
@@ -52,7 +52,7 @@ def ask_question(user_question):
52
  input_data = {
53
  "context": context,
54
  "question": user_question,
55
- "chat_history": "" # You can maintain chat history if needed
56
  }
57
 
58
  # Generate an answer
@@ -63,7 +63,10 @@ def ask_question(user_question):
63
  # Set up Gradio interface
64
  iface = gr.Interface(
65
  fn=ask_question,
66
- inputs=gr.inputs.Textbox(label="Ask a Question", placeholder="Type your question here..."),
 
 
 
67
  outputs="text",
68
  title="Legal Chatbot",
69
  description="Ask questions about the Indian Penal Code."
@@ -71,4 +74,4 @@ iface = gr.Interface(
71
 
72
  # Launch the Gradio app
73
  if __name__ == "__main__":
74
- iface.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import hf_hub_download
3
  from langchain_community.vectorstores import FAISS
4
+ from langchain_huggingface import HuggingFaceEmbeddings # Updated import
5
  from langchain.prompts import PromptTemplate
6
  from langchain_together import Together
7
 
 
31
  prompt = PromptTemplate(template=prompt_template, input_variables=['context', 'question', 'chat_history'])
32
 
33
  # Set up Together API
34
+ TOGETHER_AI_API = "your_together_api_key" # Use a secure method to store and retrieve your API key
35
 
36
  llm = Together(
37
  model="mistralai/Mistral-7B-Instruct-v0.2",
 
41
  )
42
 
43
  # Create a function to process user input and generate responses
44
+ def ask_question(user_question, chat_history=""):
45
  # Retrieve relevant documents
46
  context_docs = db_retriever.get_relevant_documents(user_question)
47
 
 
52
  input_data = {
53
  "context": context,
54
  "question": user_question,
55
+ "chat_history": chat_history # Use provided chat history
56
  }
57
 
58
  # Generate an answer
 
63
  # Set up Gradio interface
64
  iface = gr.Interface(
65
  fn=ask_question,
66
+ inputs=[
67
+ gr.Textbox(label="Ask a Question", placeholder="Type your question here..."),
68
+ gr.Textbox(label="Chat History (Optional)", placeholder="Type chat history here...", lines=2) # Added chat history input
69
+ ],
70
  outputs="text",
71
  title="Legal Chatbot",
72
  description="Ask questions about the Indian Penal Code."
 
74
 
75
  # Launch the Gradio app
76
  if __name__ == "__main__":
77
+ iface.launch()
requirements.txt CHANGED
@@ -1,10 +1,10 @@
 
 
1
  langchain
2
- faiss-cpu
3
- together
4
- transformers
5
  langchain-community
6
  langchain-together
 
 
7
  einops
8
- PyPDF2
9
- huggingface-hub
10
- gradio
 
1
+ gradio
2
+ huggingface_hub
3
  langchain
4
+ langchain-huggingface # New package for HuggingFaceEmbeddings
 
 
5
  langchain-community
6
  langchain-together
7
+ faiss-cpu
8
+ sentence-transformers
9
  einops
10
+ PyPDF2