docverifyrag / README.md
SANDRAMSC's picture
Update README.md
7c7d9e0 unverified
|
raw
history blame
3.63 kB

DocVerifyRAG: Document Verification and Anomaly Detection

Description

DocVerifyRAG is a revolutionary tool designed to streamline document verification processes in hospitals. It utilizes AI to classify documents and identify mistakes in metadata, ensuring accurate and efficient document management. Inspired by the need for improved data accuracy in healthcare, DocVerifyRAG provides automated anomaly detection to identify misclassifications and errors in document metadata, enhancing data integrity and compliance with regulatory standards.

Table of Contents

DocVerifyRAG

Video Demo

link

Web App

link

Screenshots

[Add screenshots here]

Technology Stack

Technology Description
AI/ML Artificial Intelligence and Machine Learning
Python Programming Language
Flask Web Framework
Docker Containerization
Tech Name Short description

Features

  1. Document Classification:

    • Utilizes AI/ML algorithms to classify documents based on content and metadata.
    • Provides accurate and efficient document categorization for improved data management.
  2. Anomaly Detection:

    • Identifies mistakes and misclassifications in document metadata through automated anomaly detection.
    • Enhances data integrity and accuracy by flagging discrepancies in document metadata.
  3. User-Friendly Interface:

    • Offers a user-friendly web interface for easy document upload, classification, and verification.
    • Simplifies the document management process for hospital staff, reducing manual effort and errors.

Install locally

  1. Clone the repository:

    $ git clone https://github.com/your-username/DocVerifyRAG.git
    
  2. Navigate to the project directory:

    $ cd DocVerifyRAG
    
  3. Install dependencies:

    $ pip install -r requirements.txt
    

Install using Docker

To deploy DocVerifyRAG using Docker, follow these steps:

  1. Build a Docker image for the application:

    $ docker build -t docverifyrag .
    
  2. Run the Docker container:

    $ docker run -d -p 5000:5000 docverifyrag
    

Usage

Access the web interface and follow the prompts to upload documents, classify them, and verify metadata. The AI-powered anomaly detection system will automatically flag any discrepancies or errors in the document metadata, providing accurate and reliable document management solutions for hospitals.

Authors

Name Link
Sandra Ashipala GitHub
Elia Wäfler GitHub
Carlos Salgado GitHub
Your Name GitHub

License

GitLicense