Spaces:
Running
Running
File size: 11,134 Bytes
0cffd40 c2b3f2d 36d0a3b 0cffd40 3968f74 0cffd40 3968f74 0cffd40 3968f74 0cffd40 2516da3 0cffd40 3968f74 c2b3f2d 0cffd40 36d0a3b 0cffd40 c15af9a 893f9cf 0cffd40 5a557d2 0cffd40 f0841ba 50b085c f0841ba de3ea81 0cffd40 d290faa 0cffd40 36d0a3b 7eb3578 d290faa 50b085c c075c0f 0cffd40 c075c0f 0cffd40 8a23466 c075c0f 0cffd40 2516da3 0cffd40 f0841ba 20f6444 0cffd40 4c6dd33 0cffd40 50b085c ccc0607 0cffd40 b20a23b 17931cc d290faa 17931cc b20a23b 0cffd40 0b787a1 0cffd40 893f9cf 0cffd40 eee1247 0cffd40 3968f74 0cffd40 8dd5bc6 0cffd40 8dd5bc6 0cffd40 8dd5bc6 0cffd40 8a23466 0cffd40 f03332f 0cffd40 f03332f 0cffd40 75fcca2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
from diffusers import UNet2DConditionModel, AutoencoderKL, DDIMScheduler, AutoencoderTiny
from transformers import AutoTokenizer, CLIPTextModel, CLIPTextModelWithProjection
from accelerate import Accelerator
from huggingface_hub import hf_hub_download
import spaces
import gradio as gr
import numpy as np
import torch
import time
import PIL
base = "stabilityai/stable-diffusion-xl-base-1.0"
repo_id = "tianweiy/DMD2"
subfolder = "model/sdxl/sdxl_cond999_8node_lr5e-7_denoising4step_diffusion1000_gan5e-3_guidance8_noinit_noode_backsim_scratch_checkpoint_model_019000"
filename = "pytorch_model.bin"
class ModelWrapper:
def __init__(self, model_id, checkpoint_path, precision, image_resolution, latent_resolution, num_train_timesteps, conditioning_timestep, num_step, revision, accelerator):
super().__init__()
torch.set_grad_enabled(False)
self.DTYPE = torch.float16
self.device = 0
self.tokenizer_one = AutoTokenizer.from_pretrained(model_id, subfolder="tokenizer", revision=revision, use_fast=False)
self.tokenizer_two = AutoTokenizer.from_pretrained(model_id, subfolder="tokenizer", revision=revision, use_fast=False)
self.text_encoder = SDXLTextEncoder(model_id, revision, accelerator, dtype=self.DTYPE)
self.vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae").float().to(self.device)
self.vae_dtype = torch.float32
self.tiny_vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=self.DTYPE).to(self.device)
self.tiny_vae_dtype = self.DTYPE
self.model = self.create_generator(model_id, checkpoint_path).to(dtype=self.DTYPE).to(self.device)
self.accelerator = accelerator
self.image_resolution = image_resolution
self.latent_resolution = latent_resolution
self.num_train_timesteps = num_train_timesteps
self.vae_downsample_ratio = image_resolution // latent_resolution
self.conditioning_timestep = conditioning_timestep
self.scheduler = DDIMScheduler.from_pretrained(model_id,subfolder="scheduler")
self.alphas_cumprod = self.scheduler.alphas_cumprod.to(self.device)
self.num_step = num_step
def create_generator(self, model_id, checkpoint_path):
generator = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet").to(self.DTYPE)
state_dict = torch.load(checkpoint_path)
generator.load_state_dict(state_dict, strict=True)
generator.requires_grad_(False)
return generator
def build_condition_input(self, height, width):
original_size = (height, width)
target_size = (height, width)
crop_top_left = (0, 0)
add_time_ids = list(original_size + crop_top_left + target_size)
add_time_ids = torch.tensor([add_time_ids], device="cuda", dtype=self.DTYPE)
return add_time_ids
def _encode_prompt(self, prompt):
text_input_ids_one = self.tokenizer_one([prompt], padding="max_length", max_length=self.tokenizer_one.model_max_length, truncation=True, return_tensors="pt").input_ids
text_input_ids_two = self.tokenizer_two([prompt], padding="max_length", max_length=self.tokenizer_two.model_max_length, truncation=True, return_tensors="pt").input_ids
prompt_dict = {
'text_input_ids_one': text_input_ids_one.unsqueeze(0).to(self.device),
'text_input_ids_two': text_input_ids_two.unsqueeze(0).to(self.device)
}
return prompt_dict
@staticmethod
def _get_time():
return time.time()
def sample(self, noise, unet_added_conditions, prompt_embed, fast_vae_decode):
#alphas_cumprod = self.scheduler.alphas_cumprod.to(self.device)
print("sampling...")
if self.num_step == 1:
all_timesteps = [self.conditioning_timestep]
step_interval = 0
elif self.num_step == 4:
all_timesteps = [999, 749, 499, 249]
step_interval = 250
else:
raise NotImplementedError()
noise = noise.to(torch.float16)
print(f'noise: {noise.dtype}')
#prompt_embed = prompt_embed.to(torch.float32)
DTYPE = prompt_embed.dtype
print(f'prompt_embed: {DTYPE}')
for constant in all_timesteps:
current_timesteps = torch.ones(len(prompt_embed), device="cuda", dtype=torch.long) * constant
#current_timesteps = current_timesteps.to(torch.float32)
print(f'current_timestpes: {current_timesteps.dtype}')
eval_images = self.model(noise, current_timesteps, prompt_embed, added_cond_kwargs=unet_added_conditions)
print(eval_images.dtype)
eval_images = get_x0_from_noise(noise, eval_images, alphas_cumprod, current_timesteps).to(self.DTYPE)
print(eval_images.dtype)
next_timestep = current_timesteps - step_interval
noise = self.scheduler.add_noise(eval_images, torch.randn_like(eval_images), next_timestep).to(DTYPE)
print(noise.dtype)
if fast_vae_decode:
eval_images = self.tiny_vae.decode(eval_images.to(self.tiny_vae_dtype) / self.tiny_vae.config.scaling_factor, return_dict=False)[0]
else:
eval_images = self.vae.decode(eval_images.to(self.vae_dtype) / self.vae.config.scaling_factor, return_dict=False)[0]
eval_images = ((eval_images + 1.0) * 127.5).clamp(0, 255).to(torch.uint8).permute(0, 2, 3, 1)
return eval_images
@torch.no_grad()
def inference(self, prompt, seed, height, width, num_images, fast_vae_decode):
print("Running model inference...")
if seed == -1:
seed = np.random.randint(0, 1000000)
generator = torch.manual_seed(seed)
add_time_ids = self.build_condition_input(height, width).repeat(num_images, 1)
noise = torch.randn(num_images, 4, height // self.vae_downsample_ratio, width // self.vae_downsample_ratio, generator=generator)
prompt_inputs = self._encode_prompt(prompt)
start_time = self._get_time()
prompt_embeds, pooled_prompt_embeds = self.text_encoder(prompt_inputs)
batch_prompt_embeds, batch_pooled_prompt_embeds = (
prompt_embeds.repeat(num_images, 1, 1),
pooled_prompt_embeds.repeat(num_images, 1, 1)
)
unet_added_conditions = {
"time_ids": add_time_ids,
"text_embeds": batch_pooled_prompt_embeds.squeeze(1)
}
print(f'noise: {noise.dtype}')
print(f'prompt: {batch_prompt_embeds.dtype}')
print(unet_added_conditions['time_ids'].dtype)
print(unet_added_conditions['text_embeds'].dtype)
print("________")
eval_images = self.sample(noise=noise, unet_added_conditions=unet_added_conditions, prompt_embed=batch_prompt_embeds, fast_vae_decode=fast_vae_decode)
end_time = self._get_time()
output_image_list = []
for image in eval_images:
output_image_list.append(PIL.Image.fromarray(image.cpu().numpy()))
return output_image_list, f"Run successfully in {(end_time-start_time):.2f} seconds"
@spaces.GPU()
def get_x0_from_noise(sample, model_output, alphas_cumprod, timestep):
alpha_prod_t = alphas_cumprod[timestep].reshape(-1, 1, 1, 1)
beta_prod_t = 1 - alpha_prod_t
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
return pred_original_sample
class SDXLTextEncoder(torch.nn.Module):
def __init__(self, model_id, revision, accelerator, dtype=torch.float32):
super().__init__()
self.text_encoder_one = CLIPTextModel.from_pretrained(model_id, subfolder="text_encoder", revision=revision).to(0).to(dtype=dtype)
self.text_encoder_two = CLIPTextModelWithProjection.from_pretrained(model_id, subfolder="text_encoder_2", revision=revision).to(0).to(dtype=dtype)
self.accelerator = accelerator
def forward(self, batch):
text_input_ids_one = batch['text_input_ids_one'].to(0).squeeze(1)
text_input_ids_two = batch['text_input_ids_two'].to(0).squeeze(1)
prompt_embeds_list = []
for text_input_ids, text_encoder in zip([text_input_ids_one, text_input_ids_two], [self.text_encoder_one, self.text_encoder_two]):
prompt_embeds = text_encoder(text_input_ids.to(0), output_hidden_states=True)
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.hidden_states[-2]
bs_embed, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
prompt_embeds_list.append(prompt_embeds)
prompt_embeds = torch.cat(prompt_embeds_list, dim=-1)
pooled_prompt_embeds = pooled_prompt_embeds.view(len(text_input_ids_one), -1)
return prompt_embeds, pooled_prompt_embeds
def create_demo():
TITLE = "# DMD2-SDXL Demo"
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
checkpoint_path = hf_hub_download(repo_id=repo_id, subfolder=subfolder,filename=filename)
precision = "float16"
image_resolution = 1024
latent_resolution = 128
num_train_timesteps = 1000
conditioning_timestep = 999
num_step = 4
revision = None
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
accelerator = Accelerator()
model = ModelWrapper(model_id, checkpoint_path, precision, image_resolution, latent_resolution, num_train_timesteps, conditioning_timestep, num_step, revision, accelerator)
with gr.Blocks() as demo:
gr.Markdown(TITLE)
with gr.Row():
with gr.Column():
prompt = gr.Text(value="An oil painting of two rabbits in the style of American Gothic, wearing the same clothes as in the original.", label="Prompt")
run_button = gr.Button("Run")
with gr.Accordion(label="Advanced options", open=True):
seed = gr.Slider(label="Seed", minimum=-1, maximum=1000000, step=1, value=0)
num_images = gr.Slider(label="Number of generated images", minimum=1, maximum=16, step=1, value=1)
fast_vae_decode = gr.Checkbox(label="Use Tiny VAE for faster decoding", value=True)
height = gr.Slider(label="Image Height", minimum=512, maximum=1536, step=64, value=512)
width = gr.Slider(label="Image Width", minimum=512, maximum=1536, step=64, value=512)
with gr.Column():
result = gr.Gallery(label="Generated Images", show_label=False, elem_id="gallery", height=1024)
error_message = gr.Text(label="Job Status")
inputs = [prompt, seed, height, width, num_images, fast_vae_decode]
run_button.click(fn=model.inference, inputs=inputs, outputs=[result, error_message], concurrency_limit=1)
return demo
if __name__ == "__main__":
demo = create_demo()
demo.queue(api_open=False)
demo.launch(show_error=True)
|