flux3 / app.py
salomonsky's picture
Update app.py
481dde5 verified
raw
history blame
5.54 kB
import os
import torch
import gradio as gr
import numpy as np
import random
from huggingface_hub import AsyncInferenceClient
from translatepy import Translator
import requests
import re
import asyncio
from PIL import Image
from gradio_client import Client, handle_file
from huggingface_hub import login
from gradio_imageslider import ImageSlider
MAX_SEED = np.iinfo(np.int32).max
HF_TOKEN = os.environ.get("HF_TOKEN")
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
if not os.path.exists('GFPGANv1.4.pth'):
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_path = 'GFPGANv1.4.pth'
gfpgan = GFPGANer(
model_path=model_path,
upscale_factor=4,
arch='clean',
channel_multiplier=2,
model_name='GPFGAN',
device=device
)
def enable_lora(lora_add, basemodel):
return basemodel if not lora_add else lora_add
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
try:
if seed == -1:
seed = random.randint(0, MAX_SEED)
seed = int(seed)
text = str(Translator().translate(prompt, 'English')) + "," + lora_word
client = AsyncInferenceClient()
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
return image, seed
except Exception as e:
print(f"Error generating image: {e}")
return None, None
def get_upscale_finegrain(prompt, img_path, upscale_factor):
try:
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
return result[1]
except Exception as e:
print(f"Error upscale image: {e}")
return None
def get_upscale_gfpgan(prompt, img_path):
try:
img = gfpgan.enhance(img_path)
return img
except Exception as e:
print(f"Error upscale image: {e}")
return None
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora, upscale_model):
model = enable_lora(lora_model, basemodel) if process_lora else basemodel
image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
if image is None:
return [None, None]
image_path = "temp_image.jpg"
image.save(image_path, format="JPEG")
if process_upscale:
if upscale_model == "FineGrain":
upscale_image = get_upscale_finegrain(prompt, image_path, upscale_factor)
elif upscale_model == "GPFGAN":
upscale_image = get_upscale_gfpgan(prompt, image_path)
upscale_image_path = "upscale_image.jpg"
upscale_image.save(upscale_image_path, format="JPEG")
return [image_path, upscale_image_path]
else:
return [image_path, image_path]
css = """
#col-container{ margin: 0 auto; max-width: 1024px;}
"""
with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
with gr.Column(elem_id="col-container"):
with gr.Row():
with gr.Column(scale=3):
output_res = ImageSlider(label="Flux / Upscaled")
with gr.Column(scale=2):
prompt = gr.Textbox(label="Descripción de imágen")
basemodel_choice = gr.Dropdown(label="Modelo", choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV"], value="black-forest-labs/FLUX.1-schnell")
lora_model_choice = gr.Dropdown(label="LORA Realismo", choices=["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora"], value="XLabs-AI/flux-RealismLora")
process_lora = gr.Checkbox(label="Procesar LORA")
process_upscale = gr.Checkbox(label="Procesar Escalador")
upscale_factor = gr.Radio(label="Factor de Escala", choices=[2, 4, 8], value=2)
upscale_model = gr.Radio(label="Modelo de Escalado", choices=["FineGrain", "GPFGAN"], value="FineGrain")
with gr.Accordion(label="Opciones Avanzadas", open=False):
width = gr.Slider(label="Ancho", minimum=512, maximum=1280, step=8, value=1280)
height = gr.Slider(label="Alto", minimum=512, maximum=1280, step=8, value=768)
scales = gr.Slider(label="Escalas", minimum=3.5, maximum=7, step=0.1, value=3.5)
steps = gr.Slider(label="Pasos", minimum=1, maximum=100, step=1, value=24)
seed = gr.Slider(label="Semillas", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
submit_btn = gr.Button("Crear", scale=1)
submit_btn.click(
fn=lambda: None,
inputs=None,
outputs=[output_res],
queue=False
).then(
fn=gen,
inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora, upscale_model],
outputs=[output_res]
)
demo.launch()