Spaces:
Running
Running
salomonsky
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -12,34 +12,27 @@ from gradio_client import Client, handle_file
|
|
12 |
from huggingface_hub import login
|
13 |
from gradio_imageslider import ImageSlider
|
14 |
|
15 |
-
|
16 |
MAX_SEED = np.iinfo(np.int32).max
|
17 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
18 |
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
|
19 |
-
|
20 |
|
21 |
def enable_lora(lora_add, basemodel):
|
22 |
-
"""Habilita o deshabilita LoRA seg煤n la opci贸n seleccionada"""
|
23 |
return basemodel if not lora_add else lora_add
|
24 |
|
25 |
-
|
26 |
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
|
27 |
-
"""Genera una imagen utilizando el modelo seleccionado"""
|
28 |
try:
|
29 |
if seed == -1:
|
30 |
seed = random.randint(0, MAX_SEED)
|
31 |
seed = int(seed)
|
32 |
text = str(Translator().translate(prompt, 'English')) + "," + lora_word
|
33 |
-
client = AsyncInferenceClient()
|
34 |
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
|
35 |
return image, seed
|
36 |
except Exception as e:
|
37 |
print(f"Error generando imagen: {e}")
|
38 |
-
return
|
39 |
-
|
40 |
|
41 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
42 |
-
"""Escala una imagen utilizando FineGrain"""
|
43 |
try:
|
44 |
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
|
45 |
result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
|
@@ -48,13 +41,12 @@ def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
|
48 |
print(f"Error escalando imagen: {e}")
|
49 |
return None
|
50 |
|
51 |
-
|
52 |
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
|
53 |
-
"""Funci贸n principal que genera y escala la imagen"""
|
54 |
model = enable_lora(lora_model, basemodel) if process_lora else basemodel
|
55 |
image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
|
|
|
56 |
if image is None:
|
57 |
-
return [
|
58 |
|
59 |
image_path = "temp_image.jpg"
|
60 |
image.save(image_path, format="JPEG")
|
@@ -71,12 +63,10 @@ async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_fac
|
|
71 |
else:
|
72 |
return [image_path, image_path]
|
73 |
|
74 |
-
|
75 |
css = """
|
76 |
#col-container{ margin: 0 auto; max-width: 1024px;}
|
77 |
"""
|
78 |
|
79 |
-
|
80 |
with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
|
81 |
with gr.Column(elem_id="col-container"):
|
82 |
with gr.Row():
|
@@ -98,5 +88,5 @@ with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
|
|
98 |
seed = gr.Number(label="Semilla", value=-1)
|
99 |
|
100 |
btn = gr.Button("Generar")
|
101 |
-
btn.click(fn=gen, inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora], outputs=output_res
|
102 |
demo.launch()
|
|
|
12 |
from huggingface_hub import login
|
13 |
from gradio_imageslider import ImageSlider
|
14 |
|
|
|
15 |
MAX_SEED = np.iinfo(np.int32).max
|
16 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
17 |
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
|
18 |
+
client = AsyncInferenceClient()
|
19 |
|
20 |
def enable_lora(lora_add, basemodel):
|
|
|
21 |
return basemodel if not lora_add else lora_add
|
22 |
|
|
|
23 |
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
|
|
|
24 |
try:
|
25 |
if seed == -1:
|
26 |
seed = random.randint(0, MAX_SEED)
|
27 |
seed = int(seed)
|
28 |
text = str(Translator().translate(prompt, 'English')) + "," + lora_word
|
|
|
29 |
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
|
30 |
return image, seed
|
31 |
except Exception as e:
|
32 |
print(f"Error generando imagen: {e}")
|
33 |
+
return f"Error al generar imagen: {e}", None
|
|
|
34 |
|
35 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
|
|
36 |
try:
|
37 |
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
|
38 |
result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
|
|
|
41 |
print(f"Error escalando imagen: {e}")
|
42 |
return None
|
43 |
|
|
|
44 |
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
|
|
|
45 |
model = enable_lora(lora_model, basemodel) if process_lora else basemodel
|
46 |
image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
|
47 |
+
|
48 |
if image is None:
|
49 |
+
return [f"Error generando imagen con el modelo {model}", None]
|
50 |
|
51 |
image_path = "temp_image.jpg"
|
52 |
image.save(image_path, format="JPEG")
|
|
|
63 |
else:
|
64 |
return [image_path, image_path]
|
65 |
|
|
|
66 |
css = """
|
67 |
#col-container{ margin: 0 auto; max-width: 1024px;}
|
68 |
"""
|
69 |
|
|
|
70 |
with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
|
71 |
with gr.Column(elem_id="col-container"):
|
72 |
with gr.Row():
|
|
|
88 |
seed = gr.Number(label="Semilla", value=-1)
|
89 |
|
90 |
btn = gr.Button("Generar")
|
91 |
+
btn.click(fn=gen, inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora], outputs=output_res)
|
92 |
demo.launch()
|