DataScribe / app.py
samiee2213's picture
Create app.py
9dcfa9a verified
raw
history blame
8.73 kB
import streamlit as st
from streamlit_option_menu import option_menu
import pandas as pd
import os
from google.oauth2 import service_account
from googleapiclient.discovery import build
from streamlit_chat import message as st_message
import plotly.express as px
from langchain.schema import HumanMessage, SystemMessage, AIMessage
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferWindowMemory
from langchain.prompts import PromptTemplate
import warnings
import time
from langchain_groq import ChatGroq
import numpy as np
from dotenv import load_dotenv
import re
warnings.filterwarnings("ignore", category=DeprecationWarning)
# Load environment variables
load_dotenv()
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
os.environ['GROQ_API_KEY'] = GROQ_API_KEY
llm = ChatGroq(model="llama-3.1-70b-versatile")
PROMPT_TEMPLATE = """
You are an expert information extraction assistant designed to obtain specific details from the web and external sources.
You’ll be provided with an entity name and a query that specifies the type of information needed about that entity.
Please follow the instructions carefully and return only the most relevant, accurate information.
#### Entity Name: {entity}
#### Query: {query}
Instructions:
1. Extract the information directly related to the entity.
2. If available, include only verified, publicly accessible data.
3. Provide information in a single sentence or a short, structured response.
4. If the requested information isn’t available or verifiable, respond with "Information not available."
#### Example Output Format:
"Company: {entity} | Requested Information: {extracted_information}"
Begin extraction.
"""
# Set up the page
st.set_page_config(page_title="DataScribe", page_icon=":notebook_with_decorative_cover:", layout="wide")
# Sidebar navigation
with st.sidebar:
selected = option_menu(
"DataScribe Menu",
["Home", "Upload Data", "Define Query", "Extract Information", "View & Download"],
icons=["house", "cloud-upload", "gear", "search", "table"],
menu_icon="cast",
default_index=0
)
# Main header
st.title("DataScribe: AI-Powered Information Extractor")
# Initialize session states for data and results
if "data" not in st.session_state:
st.session_state["data"] = None
if "results" not in st.session_state:
st.session_state["results"] = None
if "column_selection" not in st.session_state:
st.session_state["column_selection"] = None
# Helper function for Google Sheets API setup
def get_google_sheet_data(sheet_id, range_name):
credentials = service_account.Credentials.from_service_account_info(st.secrets["gcp_service_account"])
service = build('sheets', 'v4', credentials=credentials)
sheet = service.spreadsheets()
result = sheet.values().get(spreadsheetId=sheet_id, range=range_name).execute()
values = result.get('values', [])
return pd.DataFrame(values[1:], columns=values[0])
# Function to write results back to Google Sheets
def update_google_sheet(sheet_id, range_name, data):
credentials = service_account.Credentials.from_service_account_info(st.secrets["gcp_service_account"])
service = build('sheets', 'v4', credentials=credentials)
sheet = service.spreadsheets()
body = {
'values': [data.columns.tolist()] + data.values.tolist()
}
sheet.values().update(
spreadsheetId=sheet_id,
range=range_name,
valueInputOption="RAW",
body=body
).execute()
# Home Page
if selected == "Home":
st.markdown(
"""
### Welcome to DataScribe
**DataScribe** is an AI-powered tool designed to extract structured information from the web
based on entities in your data file. Start by uploading a CSV or Google Sheet and defining a
custom search query.
"""
)
st.image("https://via.placeholder.com/1200x400.png?text=DataScribe+AI+Agent+Dashboard") # Placeholder banner image
# Upload Data Section
elif selected == "Upload Data":
st.header("Upload or Connect Your Data")
# CSV Upload
data_source = st.radio("Choose data source:", ["CSV File", "Google Sheets"])
if data_source == "CSV File":
uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"])
if uploaded_file:
st.session_state["data"] = pd.read_csv(uploaded_file)
st.write("### Preview of Uploaded Data")
st.dataframe(st.session_state["data"].head())
elif data_source == "Google Sheets":
sheet_id = st.text_input("Enter Google Sheet ID")
range_name = st.text_input("Enter the data range (e.g., Sheet1!A1:C100)")
if st.button("Fetch Data"):
if sheet_id and range_name:
st.session_state["data"] = get_google_sheet_data(sheet_id, range_name)
st.write("### Preview of Google Sheets Data")
st.dataframe(st.session_state["data"].head())
else:
st.warning("Please enter both the Google Sheet ID and range.")
# Define Query Section
elif selected == "Define Query":
st.header("Define Your Custom Query")
if st.session_state["data"] is not None:
column_selection = st.selectbox("Select the primary column for entities", options=st.session_state["data"].columns)
query_template = st.text_input("Define your query template", "Get me the email for {company}")
st.session_state["query_template"] = query_template
st.session_state["column_selection"] = column_selection # Store column selection in session state
st.write("### Example query preview")
if column_selection:
# Convert sample_entity to string to avoid replace errors
sample_entity = str(st.session_state["data"][column_selection].iloc[0])
example_query = query_template.replace("{company}", sample_entity)
st.code(example_query)
else:
st.warning("Please upload data first.")
# Extract Information Section with Progress Bar
elif selected == "Extract Information":
st.header("Extract Information")
if st.session_state.get("query_template") and st.session_state["data"] is not None and st.session_state["column_selection"] is not None:
st.write("Data extraction is in progress. This may take a few moments.")
# Progress bar initialization
progress_bar = st.progress(0)
column_selection = st.session_state["column_selection"]
progress_step = 1.0 / len(st.session_state["data"][column_selection])
results = []
for i, entity in enumerate(st.session_state["data"][column_selection]):
# Prepare the prompt for the model
user_message = st.session_state["query_template"].replace("{company}", str(entity))
formatted_prompt = PROMPT_TEMPLATE.format(entity=entity, query=user_message)
# Append user message to the flow history
st.session_state.flowmessages.append(HumanMessage(content=user_message))
# Generate response from the model
response = llm([SystemMessage(content=formatted_prompt)])
# Collect the model's response
result_text = response[0].content if response else "Information not available"
results.append({"Entity": entity, "Extracted Information": result_text})
# Update the progress bar
progress_bar.progress((i + 1) * progress_step)
# Save and display results
st.session_state["results"] = pd.DataFrame(results)
st.write("### Extracted Information")
st.dataframe(st.session_state["results"])
# View & Download Section with Google Sheets Update
elif selected == "View & Download":
st.header("View and Download Results")
if st.session_state["results"] is not None:
st.write("### Extracted Data Table")
st.dataframe(st.session_state["results"])
# Download as CSV
csv_data = st.session_state["results"].to_csv(index=False)
st.download_button("Download as CSV", csv_data, "datascribe_results.csv", "text/csv")
# Option to update Google Sheet
sheet_id = st.text_input("Enter Google Sheet ID to update with results")
range_name = st.text_input("Enter range (e.g., Sheet1!A1)")
if st.button("Update Google Sheet"):
try:
update_google_sheet(sheet_id, range_name, st.session_state["results"])
st.success("Google Sheet updated successfully!")
except Exception as e:
st.error(f"Failed to update Google Sheet: {e}")
else:
st.warning("No data available to view or download.")