Spaces:
Sleeping
Sleeping
samiee2213
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,9 @@ from googleapiclient.discovery import build
|
|
7 |
from streamlit_chat import message as st_message
|
8 |
import plotly.express as px
|
9 |
import re
|
|
|
|
|
|
|
10 |
import warnings
|
11 |
import time
|
12 |
from langchain.schema import HumanMessage, SystemMessage, AIMessage
|
@@ -18,10 +21,13 @@ from langchain.agents import initialize_agent, Tool
|
|
18 |
from langchain.agents import AgentType
|
19 |
from langchain_groq import ChatGroq
|
20 |
import numpy as np
|
|
|
21 |
from dotenv import load_dotenv
|
22 |
|
23 |
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
24 |
-
|
|
|
|
|
25 |
#environment
|
26 |
load_dotenv()
|
27 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
@@ -56,45 +62,70 @@ agent = initialize_agent(
|
|
56 |
)
|
57 |
|
58 |
# Function to perform the web search and get results
|
59 |
-
def perform_web_search(query):
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
# Function to get LLM response for dynamic queries
|
|
|
64 |
def get_llm_response(entity, query, web_results):
|
65 |
prompt = f"""
|
66 |
Extract relevant {query} (e.g., email, phone number) from the following web results for the entity: {entity}.
|
67 |
Web Results: {web_results}
|
68 |
"""
|
69 |
-
|
70 |
human_message_content = f"""
|
71 |
Entity: {entity}
|
72 |
Query: {query}
|
73 |
Web Results: {web_results}
|
74 |
"""
|
75 |
-
|
76 |
-
response = agent.invoke([system_message_content, human_message_content])
|
77 |
-
extracted_info = response.get("output", "Information not available").strip()
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
|
|
|
|
|
|
|
|
|
|
|
83 |
# Retry logic for multiple web searches if necessary
|
84 |
def refine_answer_with_searches(entity, query, max_retries=3):
|
85 |
search_results = perform_web_search(query.format(entity=entity))
|
86 |
extracted_answer = get_llm_response(entity, query, search_results)
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
time.sleep(2)
|
93 |
-
search_results = perform_web_search(query.format(entity=entity))
|
94 |
-
extracted_answer = get_llm_response(entity, query, search_results)
|
95 |
-
else:
|
96 |
-
break
|
97 |
-
|
98 |
return extracted_answer, search_results
|
99 |
|
100 |
# Setup Google Sheets data fetch
|
@@ -122,24 +153,22 @@ with st.sidebar:
|
|
122 |
)
|
123 |
|
124 |
if selected == "Home":
|
125 |
-
|
126 |
st.markdown("""
|
127 |
<h1 style="text-align:center; color:#4CAF50; font-size: 40px;">🚀 Welcome to DataScribe</h1>
|
128 |
-
<p style="text-align:center; font-size: 18px;">An AI-powered information extraction tool to streamline data retrieval and analysis.</p>
|
129 |
""", unsafe_allow_html=True)
|
130 |
|
131 |
st.markdown("""---""")
|
|
|
132 |
def feature_card(title, description, icon, page):
|
133 |
col1, col2 = st.columns([1, 4])
|
134 |
with col1:
|
135 |
-
st.markdown(f"<div style='font-size: 40px;'>{icon}</div>", unsafe_allow_html=True)
|
136 |
with col2:
|
137 |
-
if st.button(f"{title}", key=title):
|
138 |
st.session_state.selected_page = page
|
139 |
-
st.
|
140 |
|
141 |
-
|
142 |
-
|
143 |
col1, col2 = st.columns([1, 1])
|
144 |
|
145 |
with col1:
|
@@ -183,7 +212,7 @@ elif selected == "Upload Data":
|
|
183 |
if data_source == "CSV Files":
|
184 |
if "data" in st.session_state:
|
185 |
st.success("Data uploaded successfully! Here is a preview:")
|
186 |
-
st.dataframe(st.session_state["data"])
|
187 |
else:
|
188 |
uploaded_files = st.file_uploader("Upload your CSV files", type=["csv"], accept_multiple_files=True)
|
189 |
|
@@ -200,45 +229,69 @@ elif selected == "Upload Data":
|
|
200 |
full_data = pd.concat(dfs, ignore_index=True)
|
201 |
st.session_state["data"] = full_data
|
202 |
st.success("Data uploaded successfully! Here is a preview:")
|
203 |
-
st.dataframe(full_data)
|
204 |
else:
|
205 |
st.warning("No valid data found in the uploaded files.")
|
|
|
|
|
|
|
|
|
206 |
|
207 |
elif data_source == "Google Sheets":
|
208 |
sheet_id = st.text_input("Enter Google Sheet ID")
|
209 |
range_name = st.text_input("Enter the data range (e.g., Sheet1!A1:C100)")
|
210 |
|
211 |
-
if
|
212 |
-
|
213 |
-
data
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
elif selected == "Define Query":
|
221 |
st.header("Define Your Custom Query")
|
222 |
-
|
223 |
if "data" not in st.session_state or st.session_state["data"] is None:
|
224 |
-
st.warning("Please upload data first!")
|
225 |
else:
|
226 |
-
column = st.selectbox(
|
|
|
|
|
|
|
|
|
227 |
|
228 |
-
st.markdown(
|
229 |
<style>
|
230 |
div[data-baseweb="select"] div[data-id="select"] {{
|
231 |
background-color: #f0f8ff;
|
232 |
}}
|
233 |
</style>
|
234 |
""", unsafe_allow_html=True)
|
235 |
-
|
236 |
st.subheader("Define Fields to Extract")
|
237 |
-
num_fields = st.number_input(
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
|
239 |
fields = []
|
240 |
for i in range(num_fields):
|
241 |
-
field = st.text_input(
|
|
|
|
|
|
|
|
|
|
|
242 |
if field:
|
243 |
fields.append(field)
|
244 |
|
@@ -246,7 +299,8 @@ elif selected == "Define Query":
|
|
246 |
st.subheader("Query Template")
|
247 |
query_template = st.text_area(
|
248 |
"Enter query template (Use '{entity}' to represent each entity)",
|
249 |
-
value=f"Find the {', '.join(fields)} for {{entity}}"
|
|
|
250 |
)
|
251 |
|
252 |
if "{entity}" in query_template:
|
@@ -256,11 +310,15 @@ elif selected == "Define Query":
|
|
256 |
st.code(example_query)
|
257 |
|
258 |
if st.button("Save Query Configuration"):
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
|
|
|
|
|
|
|
|
264 |
|
265 |
elif selected == "Extract Information":
|
266 |
st.header("Extract Information")
|
@@ -274,51 +332,41 @@ elif selected == "Extract Information":
|
|
274 |
st.write("### Selected Entity Column:")
|
275 |
st.dataframe(entities_column)
|
276 |
|
277 |
-
st.
|
278 |
-
|
279 |
-
# Custom styled progress bar
|
280 |
-
progress_bar = st.progress(0)
|
281 |
-
|
282 |
-
# Custom CSS for a cute progress bar style
|
283 |
-
st.markdown("""
|
284 |
-
<style>
|
285 |
-
.stProgress > div {
|
286 |
-
background-color: #FFB6C1; /* Light pink */
|
287 |
-
border-radius: 20px;
|
288 |
-
height: 15px;
|
289 |
-
}
|
290 |
-
</style>
|
291 |
-
""", unsafe_allow_html=True)
|
292 |
-
|
293 |
-
try:
|
294 |
-
results = []
|
295 |
-
for i, selected_entity in enumerate(entities_column):
|
296 |
-
user_query = st.session_state["query_template"].replace("{entity}", str(selected_entity))
|
297 |
-
final_answer, search_results = refine_answer_with_searches(selected_entity, user_query)
|
298 |
-
results.append({
|
299 |
-
"Entity": selected_entity,
|
300 |
-
"Extracted Information": final_answer,
|
301 |
-
"Search Results": search_results
|
302 |
-
})
|
303 |
-
|
304 |
-
# Update progress bar with a smooth and cute animation
|
305 |
-
progress_bar.progress(int((i + 1) / len(entities_column) * 100))
|
306 |
-
|
307 |
-
st.session_state["results"] = results
|
308 |
-
|
309 |
-
st.write("### Extracted Information")
|
310 |
-
for result in results:
|
311 |
-
st.write(f"**Entity:** {result['Entity']}")
|
312 |
-
st.write(f"**Extracted Information:** {result['Extracted Information']}")
|
313 |
|
314 |
-
|
315 |
-
|
316 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
|
318 |
-
|
319 |
-
|
320 |
else:
|
321 |
st.warning("Please upload your data and define the query template.")
|
|
|
322 |
elif selected == "View & Download":
|
323 |
st.header("View & Download Results")
|
324 |
|
@@ -326,27 +374,58 @@ elif selected == "View & Download":
|
|
326 |
results_df = pd.DataFrame(st.session_state["results"])
|
327 |
st.write("### Results Preview")
|
328 |
|
|
|
329 |
st.dataframe(results_df.style.applymap(lambda val: 'background-color: #d3f4ff' if isinstance(val, str) else '', subset=["Extracted Information", "Search Results"]))
|
330 |
|
331 |
-
st.
|
332 |
-
|
333 |
-
|
334 |
-
file_name="extracted_results.csv",
|
335 |
-
mime="text/csv"
|
336 |
)
|
337 |
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
|
345 |
st.download_button(
|
346 |
-
label="Download
|
347 |
-
data=
|
348 |
-
file_name="
|
349 |
mime="text/csv"
|
350 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
351 |
else:
|
352 |
-
st.warning("No results available to view. Please run the extraction process.")
|
|
|
7 |
from streamlit_chat import message as st_message
|
8 |
import plotly.express as px
|
9 |
import re
|
10 |
+
import streamlit as st
|
11 |
+
import gspread
|
12 |
+
from google.oauth2.service_account import Credentials
|
13 |
import warnings
|
14 |
import time
|
15 |
from langchain.schema import HumanMessage, SystemMessage, AIMessage
|
|
|
21 |
from langchain.agents import AgentType
|
22 |
from langchain_groq import ChatGroq
|
23 |
import numpy as np
|
24 |
+
import gspread
|
25 |
from dotenv import load_dotenv
|
26 |
|
27 |
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
28 |
+
scopes = ["https://www.googleapis.com/auth/spreadsheets"]
|
29 |
+
creds = Credentials.from_service_account_file("credentials.json", scopes=scopes)
|
30 |
+
client = gspread.authorize(creds)
|
31 |
#environment
|
32 |
load_dotenv()
|
33 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
|
|
62 |
)
|
63 |
|
64 |
# Function to perform the web search and get results
|
65 |
+
def perform_web_search(query, max_retries=3, delay=2):
|
66 |
+
retries = 0
|
67 |
+
while retries < max_retries:
|
68 |
+
try:
|
69 |
+
search_results = search.run(query)
|
70 |
+
return search_results
|
71 |
+
except Exception as e:
|
72 |
+
retries += 1
|
73 |
+
st.warning(f"Web search failed for query '{query}'. Retrying ({retries}/{max_retries})...")
|
74 |
+
time.sleep(delay)
|
75 |
+
st.error(f"Failed to perform web search for query '{query}' after {max_retries} retries.")
|
76 |
+
return "NaN"
|
77 |
+
def update_google_sheet(sheet_id, range_name, data):
|
78 |
+
try:
|
79 |
+
# Define the Google Sheets API scope
|
80 |
+
scopes = ["https://www.googleapis.com/auth/spreadsheets"]
|
81 |
+
creds = Credentials.from_service_account_file("credentials.json", scopes=scopes)
|
82 |
+
client = gspread.authorize(creds)
|
83 |
+
|
84 |
+
# Open the Google Sheet and specify the worksheet
|
85 |
+
sheet = client.open_by_key(sheet_id).worksheet(range_name.split("!")[0])
|
86 |
+
|
87 |
+
# Prepare data for update
|
88 |
+
data_to_update = [data.columns.tolist()] + data.values.tolist()
|
89 |
+
|
90 |
+
# Clear the existing content in the specified range and update it with new data
|
91 |
+
sheet.clear()
|
92 |
+
sheet.update(range_name, data_to_update)
|
93 |
+
|
94 |
+
st.success("Data successfully updated in the Google Sheet!")
|
95 |
+
except Exception as e:
|
96 |
+
st.error(f"Error updating Google Sheet: {e}")
|
97 |
# Function to get LLM response for dynamic queries
|
98 |
+
|
99 |
def get_llm_response(entity, query, web_results):
|
100 |
prompt = f"""
|
101 |
Extract relevant {query} (e.g., email, phone number) from the following web results for the entity: {entity}.
|
102 |
Web Results: {web_results}
|
103 |
"""
|
104 |
+
|
105 |
human_message_content = f"""
|
106 |
Entity: {entity}
|
107 |
Query: {query}
|
108 |
Web Results: {web_results}
|
109 |
"""
|
|
|
|
|
|
|
110 |
|
111 |
+
try:
|
112 |
+
response = agent.invoke([system_message_content, human_message_content], handle_parsing_errors=True)
|
113 |
+
extracted_info = response.get("output", "Information not available").strip()
|
114 |
|
115 |
+
# Clean up irrelevant parts of the response
|
116 |
+
cleaned_info = re.sub(r"(Thought:|Action:)[^A-Za-z0-9]*", "", extracted_info).strip()
|
117 |
+
return cleaned_info
|
118 |
+
except Exception as e:
|
119 |
+
return "NaN"
|
120 |
# Retry logic for multiple web searches if necessary
|
121 |
def refine_answer_with_searches(entity, query, max_retries=3):
|
122 |
search_results = perform_web_search(query.format(entity=entity))
|
123 |
extracted_answer = get_llm_response(entity, query, search_results)
|
124 |
+
|
125 |
+
if len(extracted_answer.split()) <= 2 or "not available" in extracted_answer.lower():
|
126 |
+
search_results = perform_web_search(query.format(entity=entity))
|
127 |
+
extracted_answer = get_llm_response(entity, query, search_results)
|
128 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
return extracted_answer, search_results
|
130 |
|
131 |
# Setup Google Sheets data fetch
|
|
|
153 |
)
|
154 |
|
155 |
if selected == "Home":
|
|
|
156 |
st.markdown("""
|
157 |
<h1 style="text-align:center; color:#4CAF50; font-size: 40px;">🚀 Welcome to DataScribe</h1>
|
158 |
+
<p style="text-align:center; font-size: 18px; color:#333;">An AI-powered information extraction tool to streamline data retrieval and analysis.</p>
|
159 |
""", unsafe_allow_html=True)
|
160 |
|
161 |
st.markdown("""---""")
|
162 |
+
|
163 |
def feature_card(title, description, icon, page):
|
164 |
col1, col2 = st.columns([1, 4])
|
165 |
with col1:
|
166 |
+
st.markdown(f"<div style='font-size: 40px; text-align:center;'>{icon}</div>", unsafe_allow_html=True)
|
167 |
with col2:
|
168 |
+
if st.button(f"{title}", key=title, help=description):
|
169 |
st.session_state.selected_page = page
|
170 |
+
st.markdown(f"<p style='font-size: 14px; color:#555;'>{description}</p>", unsafe_allow_html=True)
|
171 |
|
|
|
|
|
172 |
col1, col2 = st.columns([1, 1])
|
173 |
|
174 |
with col1:
|
|
|
212 |
if data_source == "CSV Files":
|
213 |
if "data" in st.session_state:
|
214 |
st.success("Data uploaded successfully! Here is a preview:")
|
215 |
+
st.dataframe(st.session_state["data"].head(10)) # Display only the first 10 rows for a cleaner view
|
216 |
else:
|
217 |
uploaded_files = st.file_uploader("Upload your CSV files", type=["csv"], accept_multiple_files=True)
|
218 |
|
|
|
229 |
full_data = pd.concat(dfs, ignore_index=True)
|
230 |
st.session_state["data"] = full_data
|
231 |
st.success("Data uploaded successfully! Here is a preview:")
|
232 |
+
st.dataframe(full_data.head(10)) # Show preview of first 10 rows
|
233 |
else:
|
234 |
st.warning("No valid data found in the uploaded files.")
|
235 |
+
|
236 |
+
if st.button("Clear Data"):
|
237 |
+
del st.session_state["data"]
|
238 |
+
st.success("Data has been cleared!")
|
239 |
|
240 |
elif data_source == "Google Sheets":
|
241 |
sheet_id = st.text_input("Enter Google Sheet ID")
|
242 |
range_name = st.text_input("Enter the data range (e.g., Sheet1!A1:C100)")
|
243 |
|
244 |
+
if sheet_id and range_name:
|
245 |
+
if st.button("Fetch Data"):
|
246 |
+
with st.spinner("Fetching data from Google Sheets..."):
|
247 |
+
try:
|
248 |
+
data = get_google_sheet_data(sheet_id, range_name)
|
249 |
+
st.session_state["data"] = data
|
250 |
+
st.success("Data fetched successfully! Here is a preview:")
|
251 |
+
st.dataframe(data.head(10)) # Show preview of first 10 rows
|
252 |
+
except Exception as e:
|
253 |
+
st.error(f"Error fetching data: {e}")
|
254 |
+
else:
|
255 |
+
st.warning("Please enter both Sheet ID and Range name before fetching data.")
|
256 |
+
|
257 |
|
258 |
elif selected == "Define Query":
|
259 |
st.header("Define Your Custom Query")
|
260 |
+
|
261 |
if "data" not in st.session_state or st.session_state["data"] is None:
|
262 |
+
st.warning("Please upload data first! Use the 'Upload Data' section to upload your data.")
|
263 |
else:
|
264 |
+
column = st.selectbox(
|
265 |
+
"Select entity column",
|
266 |
+
st.session_state["data"].columns,
|
267 |
+
help="Select the column that contains the entities for which you want to define queries."
|
268 |
+
)
|
269 |
|
270 |
+
st.markdown("""
|
271 |
<style>
|
272 |
div[data-baseweb="select"] div[data-id="select"] {{
|
273 |
background-color: #f0f8ff;
|
274 |
}}
|
275 |
</style>
|
276 |
""", unsafe_allow_html=True)
|
277 |
+
|
278 |
st.subheader("Define Fields to Extract")
|
279 |
+
num_fields = st.number_input(
|
280 |
+
"Number of fields to extract",
|
281 |
+
min_value=1,
|
282 |
+
value=1,
|
283 |
+
step=1,
|
284 |
+
help="Specify how many fields you want to extract from each entity."
|
285 |
+
)
|
286 |
|
287 |
fields = []
|
288 |
for i in range(num_fields):
|
289 |
+
field = st.text_input(
|
290 |
+
f"Field {i+1} name",
|
291 |
+
key=f"field_{i}",
|
292 |
+
placeholder=f"Enter field name for {i+1}",
|
293 |
+
help="Name the field you want to extract from the entity."
|
294 |
+
)
|
295 |
if field:
|
296 |
fields.append(field)
|
297 |
|
|
|
299 |
st.subheader("Query Template")
|
300 |
query_template = st.text_area(
|
301 |
"Enter query template (Use '{entity}' to represent each entity)",
|
302 |
+
value=f"Find the {', '.join(fields)} for {{entity}}",
|
303 |
+
help="You can use {entity} as a placeholder to represent each entity in the query."
|
304 |
)
|
305 |
|
306 |
if "{entity}" in query_template:
|
|
|
310 |
st.code(example_query)
|
311 |
|
312 |
if st.button("Save Query Configuration"):
|
313 |
+
if not fields:
|
314 |
+
st.error("Please define at least one field to extract.")
|
315 |
+
elif not query_template:
|
316 |
+
st.error("Please enter a query template.")
|
317 |
+
else:
|
318 |
+
st.session_state["column_selection"] = column
|
319 |
+
st.session_state["query_template"] = query_template
|
320 |
+
st.session_state["extraction_fields"] = fields
|
321 |
+
st.success("Query configuration saved successfully!")
|
322 |
|
323 |
elif selected == "Extract Information":
|
324 |
st.header("Extract Information")
|
|
|
332 |
st.write("### Selected Entity Column:")
|
333 |
st.dataframe(entities_column)
|
334 |
|
335 |
+
if st.button("Start Extraction"):
|
336 |
+
st.write("Data extraction is in progress. This may take a few moments.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
|
338 |
+
# Custom styled progress bar
|
339 |
+
progress_bar = st.progress(0)
|
340 |
+
try:
|
341 |
+
results = []
|
342 |
+
for i, selected_entity in enumerate(entities_column):
|
343 |
+
user_query = st.session_state["query_template"].replace("{entity}", str(selected_entity))
|
344 |
+
final_answer, search_results = refine_answer_with_searches(selected_entity, user_query)
|
345 |
+
results.append({
|
346 |
+
"Entity": selected_entity,
|
347 |
+
"Extracted Information": final_answer,
|
348 |
+
"Search Results": search_results
|
349 |
+
})
|
350 |
+
|
351 |
+
# Update progress bar with a smooth and cute animation
|
352 |
+
progress_bar.progress(int((i + 1) / len(entities_column) * 100))
|
353 |
+
|
354 |
+
st.session_state["results"] = results
|
355 |
+
|
356 |
+
st.write("### Extracted Information")
|
357 |
+
for result in results:
|
358 |
+
st.write(f"**Entity:** {result['Entity']}")
|
359 |
+
st.write(f"**Extracted Information:** {result['Extracted Information']}")
|
360 |
+
|
361 |
+
st.write("### Web Results:")
|
362 |
+
for result in results:
|
363 |
+
st.write(result["Search Results"])
|
364 |
|
365 |
+
except Exception as e:
|
366 |
+
st.error(f"An error occurred while extracting information: {e}")
|
367 |
else:
|
368 |
st.warning("Please upload your data and define the query template.")
|
369 |
+
|
370 |
elif selected == "View & Download":
|
371 |
st.header("View & Download Results")
|
372 |
|
|
|
374 |
results_df = pd.DataFrame(st.session_state["results"])
|
375 |
st.write("### Results Preview")
|
376 |
|
377 |
+
# Display results with some background color for the relevant columns
|
378 |
st.dataframe(results_df.style.applymap(lambda val: 'background-color: #d3f4ff' if isinstance(val, str) else '', subset=["Extracted Information", "Search Results"]))
|
379 |
|
380 |
+
download_option = st.selectbox(
|
381 |
+
"Select data to download:",
|
382 |
+
["All Results", "Extracted Information", "Web Results"]
|
|
|
|
|
383 |
)
|
384 |
|
385 |
+
if download_option == "All Results":
|
386 |
+
data_to_download = results_df
|
387 |
+
elif download_option == "Extracted Information":
|
388 |
+
data_to_download = results_df[["Entity", "Extracted Information"]]
|
389 |
+
elif download_option == "Web Results":
|
390 |
+
data_to_download = results_df[["Entity", "Search Results"]]
|
391 |
|
392 |
st.download_button(
|
393 |
+
label=f"Download {download_option} as CSV",
|
394 |
+
data=data_to_download.to_csv(index=False),
|
395 |
+
file_name=f"{download_option.lower().replace(' ', '_')}.csv",
|
396 |
mime="text/csv"
|
397 |
)
|
398 |
+
|
399 |
+
# To ensure the inputs and button are persistent, store their values in session_state
|
400 |
+
if 'sheet_id' not in st.session_state:
|
401 |
+
st.session_state.sheet_id = ''
|
402 |
+
if 'range_name' not in st.session_state:
|
403 |
+
st.session_state.range_name = ''
|
404 |
+
|
405 |
+
sheet_id = st.text_input("Enter Google Sheet ID", value=st.session_state.sheet_id)
|
406 |
+
range_name = st.text_input("Enter Range (e.g., 'Sheet1!A1')", value=st.session_state.range_name)
|
407 |
+
|
408 |
+
if sheet_id and range_name:
|
409 |
+
st.session_state.sheet_id = sheet_id
|
410 |
+
st.session_state.range_name = range_name
|
411 |
+
|
412 |
+
# Define data_to_update to update the Google Sheet
|
413 |
+
data_to_update = [results_df.columns.tolist()] + results_df.values.tolist()
|
414 |
+
|
415 |
+
# Update Google Sheets button
|
416 |
+
if st.button("Update Google Sheet"):
|
417 |
+
try:
|
418 |
+
if '!' not in range_name:
|
419 |
+
st.error("Invalid range format. Please use the format 'SheetName!Range'.")
|
420 |
+
else:
|
421 |
+
sheet_name, cell_range = range_name.split('!', 1)
|
422 |
+
sheet = client.open_by_key(sheet_id).worksheet(sheet_name)
|
423 |
+
sheet.clear() # Clear the existing data before updating
|
424 |
+
sheet.update(f"{cell_range}", data_to_update) # Update the data to the specified range
|
425 |
+
st.success("Data updated in the Google Sheet!")
|
426 |
+
except Exception as e:
|
427 |
+
st.error(f"Error updating Google Sheet: {e}")
|
428 |
+
else:
|
429 |
+
st.warning("Please enter both the Sheet ID and Range name before updating.")
|
430 |
else:
|
431 |
+
st.warning("No results available to view. Please run the extraction process.")
|