Samuel Stevens
update to work with integer top_values
3e841d9
import functools
import io
import json
import logging
import math
import os
import pathlib
import random
import beartype
import einops.layers.torch
import gradio as gr
import numpy as np
import open_clip
import requests
import saev.nn
import torch
from jaxtyping import Float, jaxtyped
from PIL import Image, ImageDraw
from torch import Tensor
from torchvision.transforms import v2
log_format = "[%(asctime)s] [%(levelname)s] [%(name)s] %(message)s"
logging.basicConfig(level=logging.INFO, format=log_format)
logger = logging.getLogger("app.py")
####################
# Global Constants #
####################
DEBUG = True
"""Whether we are debugging."""
n_sae_latents = 3
"""Number of SAE latents to show."""
n_sae_examples = 4
"""Number of SAE examples per latent to show."""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
"""Hardware accelerator, if any."""
vit_ckpt = "ViT-B-16/openai"
"""CLIP checkpoint."""
n_patches_per_img: int = 196
"""Number of patches per image in vit_ckpt."""
max_frequency = 1e-1
"""Maximum frequency. Any feature that fires more than this is ignored."""
CWD = pathlib.Path(__file__).parent
r2_url = "https://pub-289086e849214430853bc87bd8964988.r2.dev/"
logger.info("Set global constants.")
###########
# Helpers #
###########
@beartype.beartype
def get_cache_dir() -> str:
"""
Get cache directory from environment variables, defaulting to the current working directory (.)
Returns:
A path to a cache directory (might not exist yet).
"""
cache_dir = ""
for var in ("HF_HOME", "HF_HUB_CACHE"):
cache_dir = cache_dir or os.environ.get(var, "")
return cache_dir or "."
@beartype.beartype
def load_model(fpath: str | pathlib.Path, *, device: str = "cpu") -> torch.nn.Module:
"""
Loads a linear layer from disk.
"""
with open(fpath, "rb") as fd:
kwargs = json.loads(fd.readline().decode())
buffer = io.BytesIO(fd.read())
model = torch.nn.Linear(**kwargs)
state_dict = torch.load(buffer, weights_only=True, map_location=device)
model.load_state_dict(state_dict)
model = model.to(device)
return model
@beartype.beartype
@functools.lru_cache(maxsize=512)
def get_dataset_img(i: int) -> Image.Image:
return Image.open(requests.get(r2_url + image_fpaths[i], stream=True).raw)
@beartype.beartype
def make_img(
img: Image.Image,
patches: Float[Tensor, " n_patches"],
*,
upper: int | None = None,
) -> Image.Image:
# Resize to 256x256 and crop to 224x224
resize_size_px = (512, 512)
resize_w_px, resize_h_px = resize_size_px
crop_size_px = (448, 448)
crop_w_px, crop_h_px = crop_size_px
crop_coords_px = (
(resize_w_px - crop_w_px) // 2,
(resize_h_px - crop_h_px) // 2,
(resize_w_px + crop_w_px) // 2,
(resize_h_px + crop_h_px) // 2,
)
img = img.resize(resize_size_px).crop(crop_coords_px)
img = add_highlights(img, patches.numpy(), upper=upper, opacity=0.5)
return img
##########
# Models #
##########
@jaxtyped(typechecker=beartype.beartype)
class SplitClip(torch.nn.Module):
def __init__(self, *, n_end_layers: int):
super().__init__()
if vit_ckpt.startswith("hf-hub:"):
clip, _ = open_clip.create_model_from_pretrained(
vit_ckpt, cache_dir=get_cache_dir()
)
else:
arch, ckpt = vit_ckpt.split("/")
clip, _ = open_clip.create_model_from_pretrained(
arch, pretrained=ckpt, cache_dir=get_cache_dir()
)
model = clip.visual
model.proj = None
model.output_tokens = True # type: ignore
self.vit = model.eval()
assert not isinstance(self.vit, open_clip.timm_model.TimmModel)
self.n_end_layers = n_end_layers
@staticmethod
def _expand_token(token, batch_size: int):
return token.view(1, 1, -1).expand(batch_size, -1, -1)
def forward_start(self, x: Float[Tensor, "batch channels width height"]):
x = self.vit.conv1(x) # shape = [*, width, grid, grid]
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
# class embeddings and positional embeddings
x = torch.cat(
[self._expand_token(self.vit.class_embedding, x.shape[0]).to(x.dtype), x],
dim=1,
)
# shape = [*, grid ** 2 + 1, width]
x = x + self.vit.positional_embedding.to(x.dtype)
x = self.vit.patch_dropout(x)
x = self.vit.ln_pre(x)
for r in self.vit.transformer.resblocks[: -self.n_end_layers]:
x = r(x)
return x
def forward_end(self, x: Float[Tensor, "batch n_patches dim"]):
for r in self.vit.transformer.resblocks[-self.n_end_layers :]:
x = r(x)
x = self.vit.ln_post(x)
pooled, _ = self.vit._global_pool(x)
if self.vit.proj is not None:
pooled = pooled @ self.vit.proj
return pooled
# ViT
split_vit = SplitClip(n_end_layers=1)
split_vit = split_vit.to(device)
logger.info("Initialized CLIP ViT.")
# Linear classifier
clf_ckpt_fpath = CWD / "ckpts" / "clf.pt"
clf = load_model(clf_ckpt_fpath)
clf = clf.to(device).eval()
logger.info("Loaded linear classifier.")
# SAE
sae_ckpt_fpath = CWD / "ckpts" / "sae.pt"
sae = saev.nn.load(sae_ckpt_fpath.as_posix())
sae.to(device).eval()
logger.info("Loaded SAE.")
############
# Datasets #
############
human_transform = v2.Compose([
v2.Resize((512, 512), interpolation=v2.InterpolationMode.NEAREST),
v2.CenterCrop((448, 448)),
v2.ToImage(),
einops.layers.torch.Rearrange("channels width height -> width height channels"),
])
arch, ckpt = vit_ckpt.split("/")
_, vit_transform = open_clip.create_model_from_pretrained(
arch, pretrained=ckpt, cache_dir=get_cache_dir()
)
with open(CWD / "data" / "image_fpaths.json") as fd:
image_fpaths = json.load(fd)
with open(CWD / "data" / "image_labels.json") as fd:
image_labels = json.load(fd)
logger.info("Loaded all datasets.")
#############
# Variables #
#############
@beartype.beartype
def load_tensor(path: str | pathlib.Path) -> Tensor:
return torch.load(path, weights_only=True, map_location="cpu")
top_img_i = load_tensor(CWD / "data" / "top_img_i.pt")
top_values = load_tensor(CWD / "data" / "top_values_uint8.pt")
sparsity = load_tensor(CWD / "data" / "sparsity.pt")
mask = torch.ones((sae.cfg.d_sae), dtype=bool)
mask = mask & (sparsity < max_frequency)
#############
# Inference #
#############
@beartype.beartype
def get_image(image_i: int) -> list[Image.Image | int]:
image = get_dataset_img(image_i)
image = human_transform(image)
return [Image.fromarray(image.numpy()), image_labels[image_i]]
@beartype.beartype
def get_random_class_image(cls: int) -> Image.Image:
indices = [i for i, tgt in enumerate(image_labels) if tgt == cls]
i = random.choice(indices)
image = get_dataset_img(i)
image = human_transform(image)
return Image.fromarray(image.numpy())
@torch.inference_mode
def get_sae_examples(
image_i: int, patches: list[int]
) -> list[None | Image.Image | int]:
"""
Given a particular cell, returns some highlighted images showing what feature fires most on this cell.
"""
if not patches:
return [None] * 12 + [-1] * 3
logger.info("Getting SAE examples for patches %s.", patches)
img = get_dataset_img(image_i)
x = vit_transform(img)[None, ...].to(device)
x_BPD = split_vit.forward_start(x)
# Need to add 1 to account for [CLS] token.
vit_acts_MD = x_BPD[0, [p + 1 for p in patches]].to(device)
_, f_x_MS, _ = sae(vit_acts_MD)
f_x_S = f_x_MS.sum(axis=0)
latents = torch.argsort(f_x_S, descending=True).cpu()
latents = latents[mask[latents]][:n_sae_latents].tolist()
images = []
for latent in latents:
img_patch_pairs, seen_i_im = [], set()
for i_im, values_p in zip(top_img_i[latent].tolist(), top_values[latent]):
if i_im in seen_i_im:
continue
example_img = get_dataset_img(i_im)
img_patch_pairs.append((example_img, values_p))
seen_i_im.add(i_im)
# How to scale values.
upper = None
if top_values[latent].numel() > 0:
upper = top_values[latent].max().item()
latent_images = [
make_img(img, patches.to(float), upper=upper)
for img, patches in img_patch_pairs[:n_sae_examples]
]
while len(latent_images) < n_sae_examples:
latent_images += [None]
images.extend(latent_images)
return images + latents
@torch.inference_mode
def get_pred_dist(i: int) -> dict[int, float]:
img = get_dataset_img(i)
x = vit_transform(img)[None, ...].to(device)
x_BPD = split_vit.forward_start(x)
x_BD = split_vit.forward_end(x_BPD)
logits_BC = clf(x_BD)
probs = torch.nn.functional.softmax(logits_BC[0], dim=0).cpu().tolist()
return {i: prob for i, prob in enumerate(probs)}
@torch.inference_mode
def get_modified_dist(
image_i: int,
patches: list[int],
latent1: int,
latent2: int,
latent3: int,
value1: float,
value2: float,
value3: float,
) -> dict[int, float]:
img = get_dataset_img(image_i)
x = vit_transform(img)[None, ...].to(device)
x_BPD = split_vit.forward_start(x)
cls_B1D, x_BPD = x_BPD[:, :1, :], x_BPD[:, 1:, :]
x_hat_BPD, f_x_BPS, _ = sae(x_BPD)
err_BPD = x_BPD - x_hat_BPD
values = torch.tensor(
[
unscaled(value, top_values[latent].max().item())
for value, latent in [
(value1, latent1),
(value2, latent2),
(value3, latent3),
]
],
device=device,
)
patches = torch.tensor(patches, device=device)
latents = torch.tensor([latent1, latent2, latent3], device=device)
f_x_BPS[:, patches[:, None], latents[None, :]] = values
# Reproduce the SAE forward pass after f_x
modified_x_hat_BPD = (
einops.einsum(
f_x_BPS,
sae.W_dec,
"batch patches d_sae, d_sae d_vit -> batch patches d_vit",
)
+ sae.b_dec
)
modified_BPD = torch.cat([cls_B1D, err_BPD + modified_x_hat_BPD], axis=1)
modified_BD = split_vit.forward_end(modified_BPD)
logits_BC = clf(modified_BD)
probs = torch.nn.functional.softmax(logits_BC[0], dim=0).cpu().tolist()
return {i: prob for i, prob in enumerate(probs)}
@beartype.beartype
def unscaled(x: float | int, max_obs: float | int) -> float:
"""Scale from [-20, 20] to [20 * -max_obs, 20 * max_obs]."""
return map_range(x, (-20.0, 20.0), (-20.0 * max_obs, 20.0 * max_obs))
@beartype.beartype
def map_range(
x: float | int,
domain: tuple[float | int, float | int],
range: tuple[float | int, float | int],
):
a, b = domain
c, d = range
if not (a <= x <= b):
raise ValueError(f"x={x:.3f} must be in {[a, b]}.")
return c + (x - a) * (d - c) / (b - a)
@jaxtyped(typechecker=beartype.beartype)
def add_highlights(
img: Image.Image,
patches: Float[np.ndarray, " n_patches"],
*,
upper: int | None = None,
opacity: float = 0.9,
) -> Image.Image:
if not len(patches):
return img
iw_np, ih_np = int(math.sqrt(len(patches))), int(math.sqrt(len(patches)))
iw_px, ih_px = img.size
pw_px, ph_px = iw_px // iw_np, ih_px // ih_np
assert iw_np * ih_np == len(patches)
# Create a transparent overlay
overlay = Image.new("RGBA", img.size, (0, 0, 0, 0))
draw = ImageDraw.Draw(overlay)
# Using semi-transparent red (255, 0, 0, alpha)
for p, val in enumerate(patches):
assert upper is not None
val /= upper + 1e-9
x_np, y_np = p % iw_np, p // ih_np
draw.rectangle(
[
(x_np * pw_px, y_np * ph_px),
(x_np * pw_px + pw_px, y_np * ph_px + ph_px),
],
fill=(int(val * 256), 0, 0, int(opacity * val * 256)),
)
# Composite the original image and the overlay
return Image.alpha_composite(img.convert("RGBA"), overlay)
#############
# Interface #
#############
with gr.Blocks() as demo:
image_number = gr.Number(label="Test Example", precision=0)
class_number = gr.Number(label="Test Class", precision=0)
input_image = gr.Image(label="Input Image")
get_input_image_btn = gr.Button(value="Get Input Image")
get_input_image_btn.click(
get_image,
inputs=[image_number],
outputs=[input_image, class_number],
api_name="get-image",
)
get_random_class_image_btn = gr.Button(value="Get Random Class Image")
get_input_image_btn.click(
get_random_class_image,
inputs=[image_number],
outputs=[input_image],
api_name="get-random-class-image",
)
patch_numbers = gr.CheckboxGroup(
label="Image Patch", choices=list(range(n_patches_per_img))
)
top_latent_numbers = gr.CheckboxGroup(label="Top Latents")
top_latent_numbers = [
gr.Number(label=f"Top Latents #{j + 1}", precision=0)
for j in range(n_sae_latents)
]
sae_example_images = [
gr.Image(label=f"Latent #{j}, Example #{i + 1}")
for i in range(n_sae_examples)
for j in range(n_sae_latents)
]
get_sae_examples_btn = gr.Button(value="Get SAE Examples")
get_sae_examples_btn.click(
get_sae_examples,
inputs=[image_number, patch_numbers],
outputs=sae_example_images + top_latent_numbers,
api_name="get-sae-examples",
concurrency_limit=16,
)
pred_dist = gr.Label(label="Pred. Dist.")
get_pred_dist_btn = gr.Button(value="Get Pred. Distribution")
get_pred_dist_btn.click(
get_pred_dist,
inputs=[image_number],
outputs=[pred_dist],
api_name="get-preds",
)
latent_numbers = [gr.Number(label=f"Latent {i + 1}", precision=0) for i in range(3)]
value_sliders = [
gr.Slider(label=f"Value {i + 1}", minimum=-10, maximum=10) for i in range(3)
]
get_modified_dist_btn = gr.Button(value="Get Modified Label")
get_modified_dist_btn.click(
get_modified_dist,
inputs=[image_number, patch_numbers] + latent_numbers + value_sliders,
outputs=[pred_dist],
api_name="get-modified",
concurrency_limit=16,
)
if __name__ == "__main__":
demo.launch()