|
import torch |
|
import gradio as gr |
|
from transformers import TextIteratorStreamer, AutoProcessor, LlavaForConditionalGeneration |
|
from PIL import Image |
|
import requests |
|
import threading |
|
import spaces |
|
import accelerate |
|
|
|
DESCRIPTION = ''' |
|
<div> |
|
<h1 style="text-align: center;">Krypton π</h1> |
|
<p>This uses an Open Source model from <a href="https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers"><b>xtuner/llava-llama-3-8b-v1_1-transformers</b></a></p> |
|
</div> |
|
''' |
|
|
|
model_id = "xtuner/llava-llama-3-8b-v1_1-transformers" |
|
model = LlavaForConditionalGeneration.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16, |
|
low_cpu_mem_usage=True |
|
).to('cuda') |
|
|
|
processor = AutoProcessor.from_pretrained(model_id) |
|
|
|
@spaces.GPU(duration=120) |
|
def krypton(input_image): |
|
|
|
pil_image = Image.fromarray(input_image.astype('uint8'), 'RGB') |
|
|
|
prompt = ("<|start_header_id|>user<|end_header_id|>\n\n<image>\nWhat are these?<|eot_id|>" |
|
"<|start_header_id|>assistant<|end_header_id|>\n\n") |
|
inputs = processor(prompt, pil_image, return_tensors='pt').to('cuda', torch.float16) |
|
outputs = model.generate(**inputs, max_new_tokens=200, do_sample=False) |
|
output_text = processor.decode(outputs[0][:2], skip_special_tokens=True) |
|
return output_text |
|
|
|
with gr.Blocks(fill_height=True) as demo: |
|
gr.Markdown(DESCRIPTION) |
|
gr.Interface( |
|
fn=krypton, |
|
inputs="image", |
|
outputs="text", |
|
fill_height=True |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|