File size: 4,866 Bytes
10734c0
 
 
 
 
4b526a8
10734c0
4b526a8
d0446f7
c06d39e
 
 
 
10734c0
f08ad33
9fc2ff8
10734c0
 
c06d39e
e9863aa
2cfffe7
c06d39e
 
 
 
 
 
 
7318986
c06d39e
 
 
 
 
dff67aa
c06d39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abccd5b
4b526a8
2f88375
 
c49076d
 
 
 
 
 
 
 
abccd5b
10734c0
4b526a8
10734c0
 
 
5c7b9f9
10734c0
5c7b9f9
 
 
 
 
 
 
 
10734c0
 
4b526a8
10734c0
 
 
 
 
 
 
4b526a8
 
 
 
 
4f52190
 
 
c06d39e
 
 
4f52190
 
c06d39e
10734c0
 
 
4b526a8
10734c0
 
 
 
4b526a8
10734c0
 
49428f3
10734c0
4b526a8
10734c0
 
 
4b526a8
 
10734c0
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import whisper
import gradio as gr
from groq import Groq
from deep_translator import GoogleTranslator
from diffusers import StableDiffusionPipeline
import os
import torch
import openai
from huggingface_hub import InferenceApi
from PIL import Image
import requests
import io
import time

# Set up Groq API key
api_key = os.getenv("GROQ_API_KEY")
client = Groq(api_key=api_key)

# Hugging Face API details for image generation
H_key = os.getenv("Hugging_api_key")
API_URL = "https://api-inference.huggingface.co/models/Artples/LAI-ImageGeneration-vSDXL-2"
headers = {"Authorization": f"Bearer {H_key}"}


# Function for querying image generation with retries
def query_image_generation(payload, max_retries=5):
    for attempt in range(max_retries):
        response = requests.post(API_URL, headers=headers, json=payload)

        if response.status_code == 503:
            print(f"Model is still loading, retrying... Attempt {attempt + 1}/{max_retries}")
            estimated_time = min(response.json().get("estimated_time", 60), 60)
            time.sleep(estimated_time)
            continue

        if response.status_code != 200:
            print(f"Error: Received status code {response.status_code}")
            print(f"Response: {response.text}")
            return None

        return response.content

    print(f"Failed to generate image after {max_retries} attempts.")
    return None

# Function for generating an image from text
def generate_image(prompt):
    image_bytes = query_image_generation({"inputs": prompt})

    if image_bytes is None:
        return None

    try:
        image = Image.open(io.BytesIO(image_bytes))  # Opening the image from bytes
        return image
    except Exception as e:
        print(f"Error: {e}")
        return None


# Updated function for text generation using the new API structure
def generate_creative_text(prompt):
    chat_completion = client.chat.completions.create(
                messages=[
                    {"role": "user", "content":prompt}
                ],
                model="llama-3.2-90b-text-preview"
            )
    chatbot_response = chat_completion.choices[0].message.content
    return chatbot_response


def process_audio(audio_path, image_option, creative_text_option):
    if audio_path is None:
        return "Please upload an audio file.", None, None, None

    # Step 1: Transcribe audio
    try:
        with open(audio_path, "rb") as file:
            transcription = client.audio.transcriptions.create(
                file=(os.path.basename(audio_path), file.read()),
                model="whisper-large-v3",
                language="ta",
                response_format="verbose_json",
            )
        tamil_text = transcription.text
    except Exception as e:
        return f"An error occurred during transcription: {str(e)}", None, None, None
   
    # Step 2: Translate Tamil to English
    try:
        translator = GoogleTranslator(source='ta', target='en')
        translation = translator.translate(tamil_text)
    except Exception as e:
        return tamil_text, f"An error occurred during translation: {str(e)}", None, None

    # Step 3: Generate creative text (if selected)
    creative_text = None
    if creative_text_option == "Generate Creative Text":
        creative_text = generate_creative_text(translation)

    # Step 4: Generate image (if selected)
    image = None
    if image_option == "Generate Image":
        image = generate_image(translation)
        if image is None:
            return tamil_text, translation, creative_text, f"An error occurred during image generation"

    return tamil_text, translation, creative_text, image      


# Create Gradio interface
with gr.Blocks(theme=gr.themes.Base()) as iface:
    gr.Markdown("# Audio Transcription, Translation, Image & Creative Text Generation")
    with gr.Row():
        with gr.Column():
            audio_input = gr.Audio(type="filepath", label="Upload Audio File")
            image_option = gr.Dropdown(["Generate Image", "Skip Image"], label="Image Generation", value="Generate Image")
            creative_text_option = gr.Dropdown(["Generate Creative Text", "Skip Creative Text"], label="Creative Text Generation", value="Generate Creative Text")
            submit_button = gr.Button("Process Audio")
        with gr.Column():
            tamil_text_output = gr.Textbox(label="Tamil Transcription")
            translation_output = gr.Textbox(label="English Translation")
            creative_text_output = gr.Textbox(label="Creative Text")
            image_output = gr.Image(label="Generated Image")
    submit_button.click(
        fn=process_audio,
        inputs=[audio_input, image_option, creative_text_option],
        outputs=[tamil_text_output, translation_output, creative_text_output, image_output]
    )

# Launch the interface
iface.launch()