Spaces:
Sleeping
Sleeping
import whisper | |
import gradio as gr | |
from groq import Groq | |
from deep_translator import GoogleTranslator | |
from diffusers import StableDiffusionPipeline | |
import os | |
import torch | |
import openai | |
from huggingface_hub import InferenceApi | |
from PIL import Image | |
import requests | |
import io | |
import time | |
# Set up Groq API key | |
api_key = os.getenv("GROQ_API_KEY") | |
client = Groq(api_key=api_key) | |
# Hugging Face API details for image generation | |
H_key = os.getenv("Hugging_api_key") | |
API_URL = "https://api-inference.huggingface.co/models/Artples/LAI-ImageGeneration-vSDXL-2" | |
headers = {"Authorization": f"Bearer {H_key}"} | |
# Function for querying image generation with retries | |
def query_image_generation(payload, max_retries=5): | |
for attempt in range(max_retries): | |
response = requests.post(API_URL, headers=headers, json=payload) | |
if response.status_code == 503: | |
print(f"Model is still loading, retrying... Attempt {attempt + 1}/{max_retries}") | |
estimated_time = min(response.json().get("estimated_time", 60), 60) | |
time.sleep(estimated_time) | |
continue | |
if response.status_code != 200: | |
print(f"Error: Received status code {response.status_code}") | |
print(f"Response: {response.text}") | |
return None | |
return response.content | |
print(f"Failed to generate image after {max_retries} attempts.") | |
return None | |
# Function for generating an image from text | |
def generate_image(prompt): | |
image_bytes = query_image_generation({"inputs": prompt}) | |
if image_bytes is None: | |
return None | |
try: | |
image = Image.open(io.BytesIO(image_bytes)) # Opening the image from bytes | |
return image | |
except Exception as e: | |
print(f"Error: {e}") | |
return None | |
# Updated function for text generation using the new API structure | |
def generate_creative_text(prompt): | |
chat_completion = client.chat.completions.create( | |
messages=[ | |
{"role": "user", "content":prompt} | |
], | |
model="llama-3.2-90b-text-preview" | |
) | |
chatbot_response = chat_completion.choices[0].message.content | |
return chatbot_response | |
def process_audio(audio_path, image_option, creative_text_option): | |
if audio_path is None: | |
return "Please upload an audio file.", None, None, None | |
# Step 1: Transcribe audio | |
try: | |
with open(audio_path, "rb") as file: | |
transcription = client.audio.transcriptions.create( | |
file=(os.path.basename(audio_path), file.read()), | |
model="whisper-large-v3", | |
language="ta", | |
response_format="verbose_json", | |
) | |
tamil_text = transcription.text | |
except Exception as e: | |
return f"An error occurred during transcription: {str(e)}", None, None, None | |
# Step 2: Translate Tamil to English | |
try: | |
translator = GoogleTranslator(source='ta', target='en') | |
translation = translator.translate(tamil_text) | |
except Exception as e: | |
return tamil_text, f"An error occurred during translation: {str(e)}", None, None | |
# Step 3: Generate creative text (if selected) | |
creative_text = None | |
if creative_text_option == "Generate Creative Text": | |
creative_text = generate_creative_text(translation) | |
# Step 4: Generate image (if selected) | |
image = None | |
if image_option == "Generate Image": | |
image = generate_image(translation) | |
if image is None: | |
return tamil_text, translation, creative_text, f"An error occurred during image generation" | |
return tamil_text, translation, creative_text, image | |
# Create Gradio interface | |
with gr.Blocks(theme=gr.themes.Base()) as iface: | |
gr.Markdown("# Audio Transcription, Translation, Image & Creative Text Generation") | |
with gr.Row(): | |
with gr.Column(): | |
audio_input = gr.Audio(type="filepath", label="Upload Audio File") | |
image_option = gr.Dropdown(["Generate Image", "Skip Image"], label="Image Generation", value="Generate Image") | |
creative_text_option = gr.Dropdown(["Generate Creative Text", "Skip Creative Text"], label="Creative Text Generation", value="Generate Creative Text") | |
submit_button = gr.Button("Process Audio") | |
with gr.Column(): | |
tamil_text_output = gr.Textbox(label="Tamil Transcription") | |
translation_output = gr.Textbox(label="English Translation") | |
creative_text_output = gr.Textbox(label="Creative Text") | |
image_output = gr.Image(label="Generated Image") | |
submit_button.click( | |
fn=process_audio, | |
inputs=[audio_input, image_option, creative_text_option], | |
outputs=[tamil_text_output, translation_output, creative_text_output, image_output] | |
) | |
# Launch the interface | |
iface.launch() | |