File size: 6,386 Bytes
3ae3815
 
e3db752
 
3ae3815
 
 
 
e3db752
3ae3815
 
 
5dbfb3f
3ae3815
4438ccd
3ae3815
 
 
 
b3d61a3
e3db752
 
 
 
b3d61a3
3ae3815
 
 
 
0f04201
4438ccd
 
 
 
 
0f04201
3ae3815
 
 
 
c690ade
4438ccd
 
 
 
 
 
 
3ae3815
 
4438ccd
 
 
0f04201
3ae3815
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4438ccd
 
 
 
 
 
 
 
cdb2b77
3ae3815
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dbfb3f
 
 
 
 
3ae3815
5dbfb3f
3ae3815
 
 
cdb2b77
3ae3815
 
 
 
 
 
5dbfb3f
3ae3815
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import os
import pathlib
import time
from collections import namedtuple
from typing import List

import numpy as np
import torch
from TTS.api import TTS

os.environ["COQUI_TOS_AGREED"] = "1"

tts_pipeline = None

Voice = namedtuple("voice", ["name", "neutral", "angry", "speed"])

file_full_path = pathlib.Path(os.path.realpath(__file__)).parent

voices = [
    Voice(
        "Fast",
        neutral="empty",
        angry=None,
        speed=1.0,
    ),
    Voice(
        "Attenborough",
        neutral=f"{file_full_path}/audio/attenborough/neutral.wav",
        angry=None,
        speed=1.2,
    ),
    Voice(
        "Rick",
        neutral=f"{file_full_path}/audio/rick/neutral.wav",
        angry=None,
        speed=1.2,
    ),
    Voice(
        "Freeman",
        neutral=f"{file_full_path}/audio/freeman/neutral.wav",
        angry=f"{file_full_path}/audio/freeman/angry.wav",
        speed=1.1,
    ),
    Voice(
        "Walken",
        neutral=f"{file_full_path}/audio/walken/neutral.wav",
        angry=None,
        speed=1.1,
    ),
    Voice(
        "Darth Wader",
        neutral=f"{file_full_path}/audio/darth/neutral.wav",
        angry=None,
        speed=1.15,
    ),
]


def load_tts_pipeline():
    # load model for text to speech
    device = "cuda" if torch.cuda.is_available() else "cpu"
    # device = "mps"
    tts_pipeline = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device)
    return tts_pipeline


def compute_speaker_embedding(voice_path: str, config, pipeline, cache):
    if voice_path not in cache:
        cache[voice_path] = pipeline.synthesizer.tts_model.get_conditioning_latents(
            audio_path=voice_path,
            gpt_cond_len=config.gpt_cond_len,
            gpt_cond_chunk_len=config.gpt_cond_chunk_len,
            max_ref_length=config.max_ref_len,
            sound_norm_refs=config.sound_norm_refs,
        )
    return cache[voice_path]


voice_options = []
for voice in voices:
    if voice.neutral:
        voice_options.append(f"{voice.name} - Neutral")
    if voice.angry:
        voice_options.append(f"{voice.name} - Angry")


def voice_from_text(voice):
    for v in voices:
        if voice == f"{v.name} - Neutral":
            return v.neutral
        if voice == f"{v.name} - Angry":
            return v.angry
    raise ValueError(f"Voice {voice} not found.")


def speed_from_text(voice):
    for v in voices:
        if voice == f"{v.name} - Neutral":
            return v.speed
        if voice == f"{v.name} - Angry":
            return v.speed


def tts_xtts(
    self,
    text: str = "",
    language_name: str = "",
    reference_wav=None,
    gpt_cond_latent=None,
    speaker_embedding=None,
    split_sentences: bool = True,
    **kwargs,
) -> List[int]:
    """🐸 TTS magic. Run all the models and generate speech.

    Args:
        text (str): input text.
        speaker_name (str, optional): speaker id for multi-speaker models. Defaults to "".
        language_name (str, optional): language id for multi-language models. Defaults to "".
        speaker_wav (Union[str, List[str]], optional): path to the speaker wav for voice cloning. Defaults to None.
        style_wav ([type], optional): style waveform for GST. Defaults to None.
        style_text ([type], optional): transcription of style_wav for Capacitron. Defaults to None.
        reference_wav ([type], optional): reference waveform for voice conversion. Defaults to None.
        reference_speaker_name ([type], optional): speaker id of reference waveform. Defaults to None.
        split_sentences (bool, optional): split the input text into sentences. Defaults to True.
        **kwargs: additional arguments to pass to the TTS model.
    Returns:
        List[int]: [description]
    """
    start_time = time.time()
    use_gl = self.vocoder_model is None
    wavs = []

    if not text and not reference_wav:
        raise ValueError(
            "You need to define either `text` (for sythesis) or a `reference_wav` (for voice conversion) to use the Coqui TTS API."
        )

    if text:
        sens = [text]
        if split_sentences:
            print(" > Text splitted to sentences.")
            sens = self.split_into_sentences(text)
        print(sens)

    if not reference_wav:  # not voice conversion
        for sen in sens:
            outputs = self.tts_model.inference(
                sen,
                language_name,
                gpt_cond_latent,
                speaker_embedding,
                # GPT inference
                temperature=0.75,
                length_penalty=1.0,
                repetition_penalty=10.0,
                top_k=50,
                top_p=0.85,
                do_sample=True,
                **kwargs,
            )
            waveform = outputs["wav"]
            if (
                torch.is_tensor(waveform)
                and waveform.device != torch.device("cpu")
                and not use_gl
            ):
                waveform = waveform.cpu()
            if not use_gl:
                waveform = waveform.numpy()
            waveform = waveform.squeeze()

            # # trim silence
            # if (
            #     "do_trim_silence" in self.tts_config.audio
            #     and self.tts_config.audio["do_trim_silence"]
            # ):
            #     waveform = trim_silence(waveform, self.tts_model.ap)

            wavs += list(waveform)
            wavs += [0] * 10000

    # compute stats
    process_time = time.time() - start_time
    audio_time = len(wavs) / self.tts_config.audio["sample_rate"]
    print(f" > Processing time: {process_time}")
    print(f" > Real-time factor: {process_time / audio_time}")
    return wavs


def tts_gradio(text, voice, cache):
    global tts_pipeline
    if not tts_pipeline:
        tts_pipeline = load_tts_pipeline()

    voice_path = voice_from_text(voice)
    speed = speed_from_text(voice)
    (gpt_cond_latent, speaker_embedding) = compute_speaker_embedding(
        voice_path, tts_pipeline.synthesizer.tts_config, tts_pipeline, cache
    )
    out = tts_xtts(
        tts_pipeline.synthesizer,
        text,
        language_name="en",
        speaker=None,
        gpt_cond_latent=gpt_cond_latent,
        speaker_embedding=speaker_embedding,
        speed=speed,
        # file_path="out.wav",
    )
    return (22050, np.array(out)), dict(text=text, voice=voice)