File size: 9,552 Bytes
e3ba844
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import numpy
import torch
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel

from PIL import Image
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, logging
import os

from hue_loss import hue_loss


torch.manual_seed(1)
# if not (Path.home()/'.cache/huggingface'/'token').exists(): notebook_login()

# Supress some unnecessary warnings when loading the CLIPTextModel
logging.set_verbosity_error()

# Set device
torch_device = "cuda" if torch.cuda.is_available() else "cpu"

from huggingface_hub import hf_hub_download


stl_list = [
            'birb-style',
            'cute-game-style',
            'depthmap',
            'line-art',
            'low-poly-hd-logos-icons'
            ]

for stl in stl_list:
    if not os.path.exists(stl):
        os.mkdir(stl)
    hf_hub_download(repo_id=f"sd-concepts-library/{stl}", filename="learned_embeds.bin", local_dir=f"./{stl}")

img_size_opt_dict = {
    "512x512 - best quality but very slow": (512,512), 
    "256x256 - not good quality but still slow" :  (256,256), 
    "128x128 - poor quality  but faster" : (128,128),
    }

# Load the autoencoder model which will be used to decode the latents into image space.
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")

# Load the tokenizer and text encoder to tokenize and encode the text.
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")

# The UNet model for generating the latents.
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")

# The noise scheduler
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)

# To the GPU we go!
vae = vae.to(torch_device)
text_encoder = text_encoder.to(torch_device)
unet = unet.to(torch_device);

# Convert latents to images

def latents_to_pil(latents):
    # bath of latents -> list of images
    latents = (1 / 0.18215) * latents
    with torch.no_grad():
        image = vae.decode(latents).sample
    image = (image / 2 + 0.5).clamp(0, 1)
    image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
    images = (image * 255).round().astype("uint8")
    pil_images = [Image.fromarray(image) for image in images]
    return pil_images

# Prep Scheduler
def set_timesteps(scheduler, num_inference_steps):
    scheduler.set_timesteps(num_inference_steps)
    scheduler.timesteps = scheduler.timesteps.to(torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925

#Generating an image with these modified embeddings
def generate_with_embs(text_embeddings, text_input, loss_fn = None, loss_scale = 200, guidance_scale = 7.5,
                       seed_value = 1, num_inference_steps = 50, additional_guidence = False, hight_width = (512, 512)):
    height, width = hight_width                        # default height of Stable Diffusion
    # width = 512                         # default width of Stable Diffusion
    # num_inference_steps = 50            # Number of denoising steps
                   # Scale for classifier-free guidance
    generator = torch.manual_seed(seed_value)   # Seed generator to create the inital latent noise
    batch_size = 1


    max_length = text_input.input_ids.shape[-1]
    uncond_input = tokenizer(
      [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
    )
    with torch.no_grad():
        uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
    text_embeddings = torch.cat([uncond_embeddings, text_embeddings])

    # Prep Scheduler
    set_timesteps(scheduler, num_inference_steps)

    # Prep latents
    latents = torch.randn(
        (batch_size, unet.in_channels, height // 8, width // 8),
        generator=generator,
    )
    latents = latents.to(torch_device)
    latents = latents * scheduler.init_noise_sigma

    # Loop
    for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
        # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
        latent_model_input = torch.cat([latents] * 2)
        sigma = scheduler.sigmas[i]
        latent_model_input = scheduler.scale_model_input(latent_model_input, t)

        # predict the noise residual
        with torch.no_grad():
            noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]

        # perform guidance
        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
        noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

        #### ADDITIONAL GUIDANCE ###
        if i%5 == 0 and additional_guidence:
            # Requires grad on the latents
            latents = latents.detach().requires_grad_()

            # Get the predicted x0:
            latents_x0 = latents - sigma * noise_pred
            # latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample

            # Decode to image space
            denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)

            # Calculate loss
            loss = loss_fn(denoised_images) * loss_scale

            # Occasionally print it out
            if i%10==0:
                print(i, 'loss:', loss.item())

            # Get gradient
            cond_grad = torch.autograd.grad(loss, latents)[0]

            # Modify the latents based on this gradient
            # latents = latents.detach() - cond_grad * sigma**2
            latents = latents.detach() - cond_grad * sigma**2

        # compute the previous noisy sample x_t -> x_t-1
        latents = scheduler.step(noise_pred, t, latents).prev_sample

        # Ensure the latents do not lose the grad tracking
        # latents.requires_grad_()

    return latents_to_pil(latents)[0]

def get_output_embeds(input_embeddings):
    # CLIP's text model uses causal mask, so we prepare it here:
    bsz, seq_len = input_embeddings.shape[:2]
    causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)

    # Getting the output embeddings involves calling the model with passing output_hidden_states=True
    # so that it doesn't just return the pooled final predictions:
    encoder_outputs = text_encoder.text_model.encoder(
        inputs_embeds=input_embeddings,
        attention_mask=None, # We aren't using an attention mask so that can be None
        causal_attention_mask=causal_attention_mask.to(torch_device),
        output_attentions=None,
        output_hidden_states=True, # We want the output embs not the final output
        return_dict=None,
    )

    # We're interested in the output hidden state only
    output = encoder_outputs[0]

    # There is a final layer norm we need to pass these through
    output = text_encoder.text_model.final_layer_norm(output)

    # And now they're ready!
    return output

# Access the embedding layer
token_emb_layer = text_encoder.text_model.embeddings.token_embedding
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding

position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
position_embeddings = pos_emb_layer(position_ids)

def generate_images(prompt, num_inference_steps, stl_list, img_size):
    ### add a statis text that will contain the style
    prompt = prompt + ' in the style of puppy'
    height_width = img_size_opt_dict[img_size]
    # Tokenize
    text_input = tokenizer(prompt, padding="max_length",
                        max_length=tokenizer.model_max_length,
                        truncation=True, return_tensors="pt")
    input_ids = text_input.input_ids.to(torch_device)

    # Get token embeddings
    token_embeddings = token_emb_layer(input_ids)

    wo_guide_lst = []
    guide_lst = []
    for i, stl in enumerate(stl_list):
        stl_embed = torch.load(f'{stl}/learned_embeds.bin')

        # The new embedding - our special birb word
        replacement_token_embedding = stl_embed[f'<{stl}>'].to(torch_device)

        # Insert this into the token embeddings
        token_embeddings[0, min(torch.where(input_ids[0]==tokenizer.eos_token_id)[0]) - 1] = replacement_token_embedding.to(torch_device)

        # Combine with pos embs
        input_embeddings = token_embeddings + position_embeddings

        #  Feed through to get final output embs
        modified_output_embeddings = get_output_embeds(input_embeddings)

        # # And generate an image with this:
        pil_im = generate_with_embs(modified_output_embeddings,
                                    num_inference_steps = num_inference_steps,
                                    text_input = text_input,
                                    seed_value = i,additional_guidence = False,
                                    hight_width = height_width)
        wo_guide_lst.append((pil_im,stl))

        pil_im = generate_with_embs(modified_output_embeddings,
                                    num_inference_steps = num_inference_steps,
                                    text_input = text_input,
                                    loss_fn = hue_loss,
                                    additional_guidence = True,
                                    hight_width = height_width,
                                    seed_value = i)
        guide_lst.append((pil_im,stl))

    return wo_guide_lst, guide_lst