sayanbanerjee32 commited on
Commit
df8eb47
·
verified ·
1 Parent(s): e3ba844

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. text_image_similarity_loss.py +61 -0
text_image_similarity_loss.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import torch
3
+ import torch.nn.functional as F
4
+ from torchvision import transforms
5
+ import open_clip
6
+
7
+ # Set device
8
+ torch_device = "cuda" if torch.cuda.is_available() else "cpu"
9
+
10
+ clip_model, _, clip_preprocess = open_clip.create_model_and_transforms('ViT-B-32', pretrained='laion2b_s34b_b79k')
11
+ clip_model = clip_model.to(torch_device)
12
+ clip_model.eval() # model in train mode by default, impacts some models with BatchNorm or stochastic depth active
13
+ clip_tokenizer = open_clip.get_tokenizer('ViT-B-32')
14
+
15
+ def get_text_embedding(text):
16
+ text_tokens = clip_tokenizer([text]).to(torch_device)
17
+ with torch.no_grad(), torch.cuda.amp.autocast():
18
+ text_features = clip_model.encode_text(text_tokens).float()
19
+ text_features /= text_features.norm(dim=-1, keepdim=True)
20
+ return text_features
21
+
22
+ def get_image_embedding(image):
23
+ image_input = clip_preprocess(image).unsqueeze(0).to(torch_device)
24
+ with torch.no_grad(), torch.cuda.amp.autocast():
25
+ image_features = clip_model.encode_image(image_input).float()
26
+ image_features /= image_features.norm(dim=-1, keepdim=True)
27
+ return image_features
28
+
29
+
30
+ def text_image_similarity_loss(generated_images, target_text = "plain background"):
31
+ # Get text embedding
32
+ text_embedding = get_text_embedding(target_text)
33
+
34
+ # Ensure the generated_images have requires_grad=True
35
+ # generated_images.requires_grad_(True)
36
+
37
+ # Convert image tensor to the required format (normalization, resizing)
38
+ # Normalize the images (assuming they are in [0, 1])
39
+ transform = transforms.Compose([
40
+ transforms.Resize((224, 224)), # Example size, modify as needed
41
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
42
+ ])
43
+
44
+ # Apply the transformation
45
+ transformed_images = transform(generated_images)
46
+
47
+ # Assuming `image_encoder` is a pretrained model that returns image embeddings
48
+ # Get image embeddings
49
+ # image_embeddings = image_encoder(generated_images)
50
+ with torch.cuda.amp.autocast():
51
+ image_features = clip_model.encode_image(transformed_images).float()
52
+ norm_image_features = image_features / image_features.norm(dim=-1, keepdim=True)
53
+
54
+
55
+ # Calculate cosine similarity
56
+ cos_sim = F.cosine_similarity(norm_image_features, text_embedding, dim=-1)
57
+
58
+ # Define the loss as 1 - cosine similarity (assuming we want to maximize similarity)
59
+ loss = 1 - cos_sim.mean()
60
+
61
+ return loss