File size: 20,197 Bytes
d1a539d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import torch
import torch.nn.functional as F
import copy
import math
import random
from contextlib import nullcontext
from einops import rearrange
from scepter.modules.model.network.ldm import LatentDiffusion
from scepter.modules.model.registry import MODELS, DIFFUSIONS, BACKBONES, LOSSES, TOKENIZERS, EMBEDDERS
from scepter.modules.model.utils.basic_utils import check_list_of_list, to_device, pack_imagelist_into_tensor, \
    limit_batch_data, unpack_tensor_into_imagelist, count_params, disabled_train
from scepter.modules.utils.config import dict_to_yaml
from scepter.modules.utils.distribute import we

@MODELS.register_class()
class LatentDiffusionACEPlus(LatentDiffusion):
    para_dict = LatentDiffusion.para_dict
    def __init__(self, cfg, logger=None):
        super().__init__(cfg, logger=logger)
        self.guide_scale = cfg.get('GUIDE_SCALE', 1.0)

    def init_params(self):
        self.parameterization = self.cfg.get('PARAMETERIZATION', 'rf')
        assert self.parameterization in [
            'eps', 'x0', 'v', 'rf'
        ], 'currently only supporting "eps" and "x0" and "v" and "rf"'

        diffusion_cfg = self.cfg.get("DIFFUSION", None)
        assert diffusion_cfg is not None
        if self.cfg.have("WORK_DIR"):
            diffusion_cfg.WORK_DIR = self.cfg.WORK_DIR
        self.diffusion = DIFFUSIONS.build(diffusion_cfg, logger=self.logger)

        self.pretrained_model = self.cfg.get('PRETRAINED_MODEL', None)
        self.ignore_keys = self.cfg.get('IGNORE_KEYS', [])

        self.model_config = self.cfg.DIFFUSION_MODEL
        self.first_stage_config = self.cfg.FIRST_STAGE_MODEL
        self.cond_stage_config = self.cfg.COND_STAGE_MODEL
        self.tokenizer_config = self.cfg.get('TOKENIZER', None)
        self.loss_config = self.cfg.get('LOSS', None)

        self.scale_factor = self.cfg.get('SCALE_FACTOR', 0.18215)
        self.size_factor = self.cfg.get('SIZE_FACTOR', 16)
        self.default_n_prompt = self.cfg.get('DEFAULT_N_PROMPT', '')
        self.default_n_prompt = '' if self.default_n_prompt is None else self.default_n_prompt
        self.p_zero = self.cfg.get('P_ZERO', 0.0)
        self.train_n_prompt = self.cfg.get('TRAIN_N_PROMPT', '')
        if self.default_n_prompt is None:
            self.default_n_prompt = ''
        if self.train_n_prompt is None:
            self.train_n_prompt = ''
        self.use_ema = self.cfg.get('USE_EMA', False)
        self.model_ema_config = self.cfg.get('DIFFUSION_MODEL_EMA', None)

    def construct_network(self):
        # embedding_context = torch.device("meta") if self.model_config.get("PRETRAINED_MODEL", None) else nullcontext()
        # with embedding_context:
        self.model = BACKBONES.build(self.model_config, logger=self.logger).to(torch.bfloat16)
        self.logger.info('all parameters:{}'.format(count_params(self.model)))
        if self.use_ema:
            if self.model_ema_config:
                self.model_ema = BACKBONES.build(self.model_ema_config,
                                                 logger=self.logger)
            else:
                self.model_ema = copy.deepcopy(self.model)
            self.model_ema = self.model_ema.eval()
            for param in self.model_ema.parameters():
                param.requires_grad = False
        if self.loss_config:
            self.loss = LOSSES.build(self.loss_config, logger=self.logger)
        if self.tokenizer_config is not None:
            self.tokenizer = TOKENIZERS.build(self.tokenizer_config,
                                              logger=self.logger)
        if self.first_stage_config:
            self.first_stage_model = MODELS.build(self.first_stage_config,
                                                  logger=self.logger)
            self.first_stage_model = self.first_stage_model.eval()
            self.first_stage_model.train = disabled_train
            for param in self.first_stage_model.parameters():
                param.requires_grad = False
        else:
            self.first_stage_model = None
        if self.tokenizer_config is not None:
            self.cond_stage_config.KWARGS = {
                'vocab_size': self.tokenizer.vocab_size
            }
        if self.cond_stage_config == '__is_unconditional__':
            print(
                f'Training {self.__class__.__name__} as an unconditional model.'
            )
            self.cond_stage_model = None
        else:
            model = EMBEDDERS.build(self.cond_stage_config, logger=self.logger)
            self.cond_stage_model = model.eval().requires_grad_(False)
            self.cond_stage_model.train = disabled_train

    @torch.no_grad()
    def encode_first_stage(self, x, **kwargs):
        def run_one_image(u):
            zu = self.first_stage_model.encode(u)
            if isinstance(zu, (tuple, list)):
                zu = zu[0]
            return zu

        z = [run_one_image(u.unsqueeze(0) if u.dim() == 3 else u) for u in x]
        return z

    @torch.no_grad()
    def decode_first_stage(self, z):
        return [self.first_stage_model.decode(zu) for zu in z]
    def noise_sample(self, num_samples, h, w, seed, dtype=torch.bfloat16):
        noise = torch.randn(
            num_samples,
            16,
            # allow for packing
            2 * math.ceil(h / 16),
            2 * math.ceil(w / 16),
            device=we.device_id,
            dtype=dtype,
            generator=torch.Generator(device=we.device_id).manual_seed(seed),
        )
        return noise
    def resize_func(self, x, size):
        if x is None: return x
        return F.interpolate(x.unsqueeze(0), size = size, mode='nearest-exact')
    def parse_ref_and_edit(self, src_image,
                           modify_image,
                           src_image_mask,
                           text_embedding,
                           #text_mask,
                           edit_id):
        edit_image = []
        modi_image = []
        edit_mask = []
        ref_image = []
        ref_mask = []
        ref_context = []
        ref_y = []
        ref_id = []
        txt = []
        txt_y = []
        for sample_id, (one_src,
                        one_modify,
                        one_src_mask,
                        one_text_embedding,
                        one_text_y,
                        # one_text_mask,
                        one_edit_id)  in enumerate(zip(src_image,
                                        modify_image,
                                        src_image_mask,
                                        text_embedding["context"],
                                        text_embedding["y"],
                                        #text_mask,
                                        edit_id)
                                ):
            ref_id.append([i for i in range(len(one_src))])
            if hasattr(self, "ref_cond_stage_model") and self.ref_cond_stage_model:
                ref_image.append(self.ref_cond_stage_model.encode_list([((i + 1.0) / 2.0 * 255).type(torch.uint8) for i in one_src]))
            else:
                ref_image.append(one_src)
            ref_mask.append(one_src_mask)
            # process edit image & edit image mask
            current_edit_image = to_device([one_src[i] for i in one_edit_id], strict=False)
            current_edit_image = [v.squeeze(0) for v in self.encode_first_stage(current_edit_image)]
            # process modi image
            current_modify_image = to_device([one_modify[i] for i in one_edit_id],
                                             strict=False)
            current_modify_image = [
                v.squeeze(0)
                for v in self.encode_first_stage(current_modify_image)
            ]
            current_edit_image_mask = to_device(
                [one_src_mask[i] for i in one_edit_id], strict=False)
            current_edit_image_mask = [
                self.reshape_func(m).squeeze(0)
                for m in current_edit_image_mask
            ]

            edit_image.append(current_edit_image)
            modi_image.append(current_modify_image)
            edit_mask.append(current_edit_image_mask)
            ref_context.append(one_text_embedding[:len(ref_id[-1])])
            ref_y.append(one_text_y[:len(ref_id[-1])])
        if not sum(len(src_) for src_ in src_image) > 0:
            ref_image = None
            ref_context = None
            ref_y = None
        for sample_id, (one_text_embedding, one_text_y) in enumerate(zip(text_embedding["context"],
                                                    text_embedding["y"])):
            txt.append(one_text_embedding[-1].squeeze(0))
            txt_y.append(one_text_y[-1])
        return {
            "edit": edit_image,
            'modify': modi_image,
            "edit_mask": edit_mask,
            "edit_id": edit_id,
            "ref_context": ref_context,
            "ref_y": ref_y,
            "context": txt,
            "y": txt_y,
            "ref_x": ref_image,
            "ref_mask": ref_mask,
            "ref_id": ref_id
        }


    def reshape_func(self, mask):
        mask = mask.to(torch.bfloat16)
        mask = mask.view((-1, mask.shape[-2], mask.shape[-1]))
        mask = rearrange(
            mask,
            "c (h ph) (w pw) -> c (ph pw) h w",
            ph=8,
            pw=8,
        )
        return mask

    def forward_train(self,
                      src_image_list=[],
                      modify_image_list=[],
                      src_mask_list=[],
                      edit_id=[],
                      image=None,
                      image_mask=None,
                      noise=None,
                      prompt=[],
                      **kwargs):
        '''
           Args:
               src_image: list of list of src_image
               src_image_mask: list of list of src_image_mask
               image: target image
               image_mask: target image mask
               noise: default is None, generate automaticly
               ref_prompt: list of list of text
               prompt: list of text
               **kwargs:
           Returns:
        '''
        assert check_list_of_list(src_image_list) and check_list_of_list(
            src_mask_list)
        assert self.cond_stage_model is not None

        gc_seg = kwargs.pop("gc_seg", [])
        gc_seg = int(gc_seg[0]) if len(gc_seg) > 0 else 0
        align = kwargs.pop("align", [])
        prompt_ = [[pp] if isinstance(pp, str) else pp for pp in prompt]
        if len(align) < 1: align = [0] * len(prompt_)
        context = getattr(self.cond_stage_model, 'encode_list_of_list')(prompt_)
        guide_scale = self.guide_scale
        if guide_scale is not None:
            guide_scale = torch.full((len(prompt_),), guide_scale, device=we.device_id)
        else:
            guide_scale = None
        # image and image_mask
        # print("is list of list", check_list_of_list(image))
        if check_list_of_list(image):
            image = [to_device(ix) for ix in image]
            x_start = [self.encode_first_stage(ix, **kwargs) for ix in image]
            noise = [[torch.randn_like(ii) for ii in ix] for ix in x_start]
            x_start = [torch.cat(ix, dim=-1) for ix in x_start]
            noise = [torch.cat(ix, dim=-1) for ix in noise]

            noise, _ = pack_imagelist_into_tensor(noise)

            image_mask = [to_device(im, strict=False) for im in image_mask]
            x_mask = [[self.reshape_func(i).squeeze(0) for i in im] if im is not None else [None] * len(ix) for ix, im in zip(image, image_mask)]
            x_mask = [torch.cat(im, dim=-1) for im in x_mask]
        else:
            image = to_device(image)
            x_start = self.encode_first_stage(image, **kwargs)
            image_mask = to_device(image_mask, strict=False)
            x_mask = [self.reshape_func(i).squeeze(0) for i in image_mask] if image_mask is not None else [None] * len(
                image)
        loss_mask, _ = pack_imagelist_into_tensor(
            tuple(torch.ones_like(ix, dtype=torch.bool, device=ix.device) for ix in x_start))
        x_start, x_shapes = pack_imagelist_into_tensor(x_start)
        context['x_shapes'] = x_shapes
        context['align'] = align
        # process image mask

        context['x_mask'] = x_mask
        ref_edit_context = self.parse_ref_and_edit(src_image_list, modify_image_list, src_mask_list, context, edit_id)
        context.update(ref_edit_context)

        teacher_context = copy.deepcopy(context)
        teacher_context["context"] = torch.cat(teacher_context["context"], dim=0)
        teacher_context["y"] = torch.cat(teacher_context["y"], dim=0)
        loss = self.diffusion.loss(x_0=x_start,
                                   model=self.model,
                                   model_kwargs={"cond": context,
                                                 "gc_seg": gc_seg,
                                                 "guidance": guide_scale},
                                   noise=noise,
                                   reduction='none',
                                   **kwargs)
        loss = loss[loss_mask].mean()
        ret = {'loss': loss, 'probe_data': {'prompt': prompt}}
        return ret

    @torch.no_grad()
    def forward_test(self,
                     src_image_list=[],
                     modify_image_list=[],
                     src_mask_list=[],
                     edit_id=[],
                     image=None,
                     image_mask=None,
                     prompt=[],
                     sampler='flow_euler',
                     sample_steps=20,
                     seed=2023,
                     guide_scale=3.5,
                     guide_rescale=0.0,
                     show_process=False,
                     log_num=-1,
                     **kwargs):
        outputs = self.forward_editing(
            src_image_list=src_image_list,
            src_mask_list=src_mask_list,
            modify_image_list=modify_image_list,
            edit_id=edit_id,
            image=image,
            image_mask=image_mask,
            prompt=prompt,
            sampler=sampler,
            sample_steps=sample_steps,
            seed=seed,
            guide_scale=guide_scale,
            guide_rescale=guide_rescale,
            show_process=show_process,
            log_num=log_num,
            **kwargs
        )
        return outputs

    @torch.no_grad()
    def forward_editing(self,
                        src_image_list=[],
                        modify_image_list=None,
                        src_mask_list=[],
                        edit_id=[],
                        image=None,
                        image_mask=None,
                        prompt=[],
                        sampler='flow_euler',
                        sample_steps=20,
                        seed=2023,
                        guide_scale=3.5,
                        log_num=-1,
                        **kwargs
                        ):
        # gc_seg is unused
        prompt, image, image_mask, src_image, modify_image,  src_image_mask, edit_id = limit_batch_data(
            [prompt, image, image_mask, src_image_list, modify_image_list, src_mask_list, edit_id], log_num)
        assert check_list_of_list(src_image) and check_list_of_list(src_image_mask)
        assert self.cond_stage_model is not None
        align = kwargs.pop("align", [])
        prompt_ = [[pp] if isinstance(pp, str) else pp for pp in prompt]
        if len(align) < 1: align = [0] * len(prompt_)
        context = getattr(self.cond_stage_model, 'encode_list_of_list')(prompt_)
        guide_scale = guide_scale or self.guide_scale
        if guide_scale is not None:
            guide_scale = torch.full((len(prompt),), guide_scale, device=we.device_id)
        else:
            guide_scale = None
        # image and image_mask
        seed = seed if seed >= 0 else random.randint(0, 2 ** 32 - 1)
        if image is not None:
            if check_list_of_list(image):
                image = [torch.cat(ix, dim=-1) for ix in image]
                image_mask = [torch.cat(im, dim=-1) for im in image_mask]
            noise = [self.noise_sample(1, ix.shape[1], ix.shape[2], seed) for ix in image]
        else:
            height, width = kwargs.pop("height"), kwargs.pop("width")
            noise = [self.noise_sample(1, height, width, seed) for _ in prompt]
        noise, x_shapes = pack_imagelist_into_tensor(noise)
        context['x_shapes'] = x_shapes
        context['align'] = align
        # process image mask
        image_mask = to_device(image_mask, strict=False)
        x_mask = [self.reshape_func(i).squeeze(0) for i in image_mask]
        context['x_mask'] = x_mask
        ref_edit_context = self.parse_ref_and_edit(src_image, modify_image, src_image_mask, context, edit_id)
        context.update(ref_edit_context)
        # UNet use input n_prompt
        # model = self.model_ema if self.use_ema and self.eval_ema else self.model
        # import pdb;pdb.set_trace()
        model = self.model
        embedding_context = model.no_sync if isinstance(model, torch.distributed.fsdp.FullyShardedDataParallel) \
            else nullcontext
        with embedding_context():
            samples = self.diffusion.sample(
                noise=noise,
                sampler=sampler,
                model=self.model,
                model_kwargs={"cond": context, "guidance": guide_scale, "gc_seg": -1
                              },
                steps=sample_steps,
                show_progress=True,
                guide_scale=guide_scale,
                return_intermediate=None,
                **kwargs).float()
        samples = unpack_tensor_into_imagelist(samples, x_shapes)
        with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
            x_samples = self.decode_first_stage(samples)
        outputs = list()
        for i in range(len(prompt)):
            rec_img = torch.clamp((x_samples[i].float() + 1.0) / 2.0, min=0.0, max=1.0)
            rec_img = rec_img.squeeze(0)
            edit_imgs, modify_imgs, edit_img_masks = [], [], []
            if src_image is not None and src_image[i] is not None:
                if src_image_mask[i] is None:
                    src_image_mask[i] = [None] * len(src_image[i])
                for edit_img, modify_img, edit_mask in zip(src_image[i],  modify_image_list[i], src_image_mask[i]):
                    edit_img = torch.clamp((edit_img.float() + 1.0) / 2.0, min=0.0, max=1.0)
                    edit_imgs.append(edit_img.squeeze(0))
                    modify_img = torch.clamp((modify_img.float() + 1.0) / 2.0,
                                           min=0.0,
                                           max=1.0)
                    modify_imgs.append(modify_img.squeeze(0))
                    if edit_mask is None:
                        edit_mask = torch.ones_like(edit_img[[0], :, :])
                    edit_img_masks.append(edit_mask)
            one_tup = {
                'reconstruct_image': rec_img,
                'instruction': prompt[i],
                'edit_image': edit_imgs if len(edit_imgs) > 0 else None,
                'modify_image': modify_imgs if len(modify_imgs) > 0 else None,
                'edit_mask': edit_img_masks if len(edit_imgs) > 0 else None
            }
            if image is not None:
                if image_mask is None:
                    image_mask = [None] * len(image)
                ori_img = torch.clamp((image[i] + 1.0) / 2.0, min=0.0, max=1.0)
                one_tup['target_image'] = ori_img.squeeze(0)
                one_tup['target_mask'] = image_mask[i] if image_mask[i] is not None else torch.ones_like(
                    ori_img[[0], :, :])
            outputs.append(one_tup)
        return outputs

    @staticmethod
    def get_config_template():
        return dict_to_yaml('MODEL',
                            __class__.__name__,
                            LatentDiffusionACEPlus.para_dict,
                            set_name=True)