File size: 8,687 Bytes
d1a539d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import numpy as np
import torch
from scepter.modules.solver import LatentDiffusionSolver
from scepter.modules.solver.registry import SOLVERS
from scepter.modules.utils.data import transfer_data_to_cuda
from scepter.modules.utils.distribute import we
from scepter.modules.utils.probe import ProbeData
from tqdm import tqdm
@SOLVERS.register_class()
class FormalACEPlusSolver(LatentDiffusionSolver):
    def __init__(self, cfg, logger=None):
        super().__init__(cfg, logger=logger)
        self.probe_prompt = cfg.get("PROBE_PROMPT", None)
        self.probe_hw = cfg.get("PROBE_HW", [])

    @torch.no_grad()
    def run_eval(self):
        self.eval_mode()
        self.before_all_iter(self.hooks_dict[self._mode])
        all_results = []
        for batch_idx, batch_data in tqdm(
                enumerate(self.datas[self._mode].dataloader)):
            self.before_iter(self.hooks_dict[self._mode])
            if self.sample_args:
                batch_data.update(self.sample_args.get_lowercase_dict())
            with torch.autocast(device_type='cuda',
                                enabled=self.use_amp,
                                dtype=self.dtype):
                results = self.run_step_eval(transfer_data_to_cuda(batch_data),
                                             batch_idx,
                                             step=self.total_iter,
                                             rank=we.rank)
                all_results.extend(results)
            self.after_iter(self.hooks_dict[self._mode])
        log_data, log_label = self.save_results(all_results)
        self.register_probe({'eval_label': log_label})
        self.register_probe({
            'eval_image':
                ProbeData(log_data,
                          is_image=True,
                          build_html=True,
                          build_label=log_label)
        })
        self.after_all_iter(self.hooks_dict[self._mode])

    @torch.no_grad()
    def run_test(self):
        self.test_mode()
        self.before_all_iter(self.hooks_dict[self._mode])
        all_results = []
        for batch_idx, batch_data in tqdm(
                enumerate(self.datas[self._mode].dataloader)):
            self.before_iter(self.hooks_dict[self._mode])
            if self.sample_args:
                batch_data.update(self.sample_args.get_lowercase_dict())
            with torch.autocast(device_type='cuda',
                                enabled=self.use_amp,
                                dtype=self.dtype):
                results = self.run_step_eval(transfer_data_to_cuda(batch_data),
                                             batch_idx,
                                             step=self.total_iter,
                                             rank=we.rank)
                all_results.extend(results)
            self.after_iter(self.hooks_dict[self._mode])
        log_data, log_label = self.save_results(all_results)
        self.register_probe({'test_label': log_label})
        self.register_probe({
            'test_image':
                ProbeData(log_data,
                          is_image=True,
                          build_html=True,
                          build_label=log_label)
        })

        self.after_all_iter(self.hooks_dict[self._mode])

    def run_step_val(self, batch_data, batch_idx=0, step=None, rank=None):
        sample_id_list = batch_data['sample_id']
        loss_dict = {}
        with torch.autocast(device_type='cuda',
                            enabled=self.use_amp,
                            dtype=self.dtype):
            results = self.model.forward_train(**batch_data)
            loss = results['loss']
        for sample_id in sample_id_list:
            loss_dict[sample_id] = loss.detach().cpu().numpy()
        return loss_dict

    def save_results(self, results):
        log_data, log_label = [], []
        for result in results:
            ret_images, ret_labels = [], []
            edit_image = result.get('edit_image', None)
            modify_image = result.get('modify_image', None)
            edit_mask = result.get('edit_mask', None)
            if edit_image is not None:
                for i, edit_img in enumerate(result['edit_image']):
                    if edit_img is None:
                        continue
                    ret_images.append((edit_img.permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8))
                    ret_labels.append(f'edit_image{i}; ')
                    ret_images.append((modify_image[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8))
                    ret_labels.append(f'modify_image{i}; ')
                    if edit_mask is not None:
                        ret_images.append((edit_mask[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8))
                        ret_labels.append(f'edit_mask{i}; ')

            target_image = result.get('target_image', None)
            target_mask = result.get('target_mask', None)
            if target_image is not None:
                ret_images.append((target_image.permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8))
                ret_labels.append(f'target_image; ')
                if target_mask is not None:
                    ret_images.append((target_mask.permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8))
                    ret_labels.append(f'target_mask; ')
            teacher_image = result.get('image', None)
            if teacher_image is not None:
                ret_images.append((teacher_image.permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8))
                ret_labels.append(f"teacher_image")
            reconstruct_image = result.get('reconstruct_image', None)
            if reconstruct_image is not None:
                ret_images.append((reconstruct_image.permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8))
                ret_labels.append(f"{result['instruction']}")
            log_data.append(ret_images)
            log_label.append(ret_labels)
        return log_data, log_label
    @property
    def probe_data(self):
        if not we.debug and self.mode == 'train':
            batch_data = transfer_data_to_cuda(self.current_batch_data[self.mode])
            self.eval_mode()
            with torch.autocast(device_type='cuda',
                                enabled=self.use_amp,
                                dtype=self.dtype):
                batch_data['log_num'] = self.log_train_num
                batch_data.update(self.sample_args.get_lowercase_dict())
                results = self.run_step_eval(batch_data)
            self.train_mode()
            log_data, log_label = self.save_results(results)
            self.register_probe({
                'train_image':
                    ProbeData(log_data,
                              is_image=True,
                              build_html=True,
                              build_label=log_label)
            })
            self.register_probe({'train_label': log_label})
            if self.probe_prompt:
                self.eval_mode()
                all_results = []
                for prompt in self.probe_prompt:
                    with torch.autocast(device_type='cuda',
                                        enabled=self.use_amp,
                                        dtype=self.dtype):
                        batch_data = {
                            "prompt": [[prompt]],
                            "image": [torch.zeros(3, self.probe_hw[0], self.probe_hw[1])],
                            "image_mask": [torch.ones(1, self.probe_hw[0], self.probe_hw[1])],
                            "src_image_list": [[]],
                            "modify_image_list": [[]],
                            "src_mask_list": [[]],
                            "edit_id": [[]],
                            "height": self.probe_hw[0],
                            "width": self.probe_hw[1]
                        }
                        batch_data.update(self.sample_args.get_lowercase_dict())
                        results = self.run_step_eval(batch_data)
                        all_results.extend(results)
                self.train_mode()
                log_data, log_label = self.save_results(all_results)
                self.register_probe({
                    'probe_image':
                        ProbeData(log_data,
                                  is_image=True,
                                  build_html=True,
                                  build_label=log_label)
                })

        return super(LatentDiffusionSolver, self).probe_data