Spaces:
Running
on
Zero
Running
on
Zero
# -*- coding: utf-8 -*- | |
# Copyright (c) Alibaba, Inc. and its affiliates. | |
import math | |
import os | |
import random | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from PIL import Image | |
import torchvision.transforms as T | |
from scepter.modules.model.registry import DIFFUSIONS, BACKBONES | |
import torchvision.transforms.functional as TF | |
from scepter.modules.model.utils.basic_utils import check_list_of_list | |
from scepter.modules.model.utils.basic_utils import \ | |
pack_imagelist_into_tensor_v2 as pack_imagelist_into_tensor | |
from scepter.modules.model.utils.basic_utils import ( | |
to_device, unpack_tensor_into_imagelist) | |
from scepter.modules.utils.distribute import we | |
from scepter.modules.utils.file_system import FS | |
from scepter.modules.utils.logger import get_logger | |
from scepter.modules.inference.diffusion_inference import DiffusionInference, get_model | |
def process_edit_image(images, | |
masks, | |
tasks): | |
if not isinstance(images, list): | |
images = [images] | |
if not isinstance(masks, list): | |
masks = [masks] | |
if not isinstance(tasks, list): | |
tasks = [tasks] | |
img_tensors = [] | |
mask_tensors = [] | |
for img, mask, task in zip(images, masks, tasks): | |
if mask is None or mask == '': | |
mask = Image.new('L', img.size, 0) | |
img = TF.center_crop(img, [512, 512]) | |
mask = TF.center_crop(mask, [512, 512]) | |
mask = np.asarray(mask) | |
mask = np.where(mask > 128, 1, 0) | |
mask = mask.astype( | |
np.float32) if np.any(mask) else np.ones_like(mask).astype( | |
np.float32) | |
img_tensor = TF.to_tensor(img).to(we.device_id) | |
img_tensor = TF.normalize(img_tensor, | |
mean=[0.5, 0.5, 0.5], | |
std=[0.5, 0.5, 0.5]) | |
mask_tensor = TF.to_tensor(mask).to(we.device_id) | |
if task in ['inpainting', 'Try On', 'Inpainting']: | |
mask_indicator = mask_tensor.repeat(3, 1, 1) | |
img_tensor[mask_indicator == 1] = -1.0 | |
img_tensors.append(img_tensor) | |
mask_tensors.append(mask_tensor) | |
return img_tensors, mask_tensors | |
class FluxACEInference(DiffusionInference): | |
def __init__(self, logger=None): | |
if logger is None: | |
logger = get_logger(name='scepter') | |
self.logger = logger | |
self.loaded_model = {} | |
self.loaded_model_name = [ | |
'diffusion_model', 'first_stage_model', 'cond_stage_model', 'ref_cond_stage_model' | |
] | |
def init_from_cfg(self, cfg): | |
self.name = cfg.NAME | |
self.is_default = cfg.get('IS_DEFAULT', False) | |
self.use_dynamic_model = cfg.get('USE_DYNAMIC_MODEL', True) | |
module_paras = self.load_default(cfg.get('DEFAULT_PARAS', None)) | |
assert cfg.have('MODEL') | |
self.size_factor = cfg.get('SIZE_FACTOR', 8) | |
self.diffusion_model = self.infer_model( | |
cfg.MODEL.DIFFUSION_MODEL, module_paras.get( | |
'DIFFUSION_MODEL', | |
None)) if cfg.MODEL.have('DIFFUSION_MODEL') else None | |
self.first_stage_model = self.infer_model( | |
cfg.MODEL.FIRST_STAGE_MODEL, | |
module_paras.get( | |
'FIRST_STAGE_MODEL', | |
None)) if cfg.MODEL.have('FIRST_STAGE_MODEL') else None | |
self.cond_stage_model = self.infer_model( | |
cfg.MODEL.COND_STAGE_MODEL, | |
module_paras.get( | |
'COND_STAGE_MODEL', | |
None)) if cfg.MODEL.have('COND_STAGE_MODEL') else None | |
self.ref_cond_stage_model = self.infer_model( | |
cfg.MODEL.REF_COND_STAGE_MODEL, | |
module_paras.get( | |
'REF_COND_STAGE_MODEL', | |
None)) if cfg.MODEL.have('REF_COND_STAGE_MODEL') else None | |
self.diffusion = DIFFUSIONS.build(cfg.MODEL.DIFFUSION, | |
logger=self.logger) | |
self.interpolate_func = lambda x: (F.interpolate( | |
x.unsqueeze(0), | |
scale_factor=1 / self.size_factor, | |
mode='nearest-exact') if x is not None else None) | |
self.max_seq_length = cfg.get("MAX_SEQ_LENGTH", 4096) | |
if not self.use_dynamic_model: | |
self.dynamic_load(self.first_stage_model, 'first_stage_model') | |
self.dynamic_load(self.cond_stage_model, 'cond_stage_model') | |
if self.ref_cond_stage_model is not None: self.dynamic_load(self.ref_cond_stage_model, 'ref_cond_stage_model') | |
with torch.device("meta"): | |
pretrained_model = self.diffusion_model['cfg'].PRETRAINED_MODEL | |
self.diffusion_model['cfg'].PRETRAINED_MODEL = None | |
diffusers_lora = self.diffusion_model['cfg'].get("DIFFUSERS_LORA_MODEL", None) | |
self.diffusion_model['cfg'].DIFFUSERS_LORA_MODEL = None | |
swift_lora = self.diffusion_model['cfg'].get("SWIFT_LORA_MODEL", None) | |
self.diffusion_model['cfg'].SWIFT_LORA_MODEL = None | |
pretrain_adapter = self.diffusion_model['cfg'].get("PRETRAIN_ADAPTER", None) | |
self.diffusion_model['cfg'].PRETRAIN_ADAPTER = None | |
blackforest_lora = self.diffusion_model['cfg'].get("BLACKFOREST_LORA_MODEL", None) | |
self.diffusion_model['cfg'].BLACKFOREST_LORA_MODEL = None | |
self.diffusion_model['model'] = BACKBONES.build(self.diffusion_model['cfg'], logger=self.logger).eval() | |
# self.dynamic_load(self.diffusion_model, 'diffusion_model') | |
self.diffusion_model['model'].lora_model = diffusers_lora | |
self.diffusion_model['model'].swift_lora_model = swift_lora | |
self.diffusion_model['model'].pretrain_adapter = pretrain_adapter | |
self.diffusion_model['model'].blackforest_lora_model = blackforest_lora | |
self.diffusion_model['model'].load_pretrained_model(pretrained_model) | |
self.diffusion_model['device'] = we.device_id | |
def upscale_resize(self, image, interpolation=T.InterpolationMode.BILINEAR): | |
c, H, W = image.shape | |
scale = max(1.0, math.sqrt(self.max_seq_length / ((H / 16) * (W / 16)))) | |
rH = int(H * scale) // 16 * 16 # ensure divisible by self.d | |
rW = int(W * scale) // 16 * 16 | |
image = T.Resize((rH, rW), interpolation=interpolation, antialias=True)(image) | |
return image | |
def encode_first_stage(self, x, **kwargs): | |
_, dtype = self.get_function_info(self.first_stage_model, 'encode') | |
with torch.autocast('cuda', | |
enabled=dtype in ('float16', 'bfloat16'), | |
dtype=getattr(torch, dtype)): | |
def run_one_image(u): | |
zu = get_model(self.first_stage_model).encode(u) | |
if isinstance(zu, (tuple, list)): | |
zu = zu[0] | |
return zu | |
z = [run_one_image(u.unsqueeze(0) if u.dim() == 3 else u) for u in x] | |
return z | |
def decode_first_stage(self, z): | |
_, dtype = self.get_function_info(self.first_stage_model, 'decode') | |
with torch.autocast('cuda', | |
enabled=dtype in ('float16', 'bfloat16'), | |
dtype=getattr(torch, dtype)): | |
return [get_model(self.first_stage_model).decode(zu) for zu in z] | |
def noise_sample(self, num_samples, h, w, seed, device = None, dtype = torch.bfloat16): | |
noise = torch.randn( | |
num_samples, | |
16, | |
# allow for packing | |
2 * math.ceil(h / 16), | |
2 * math.ceil(w / 16), | |
device="cpu", | |
dtype=dtype, | |
generator=torch.Generator().manual_seed(seed), | |
).to(device) | |
return noise | |
def __call__(self, | |
image=None, | |
mask=None, | |
prompt='', | |
task=None, | |
negative_prompt='', | |
output_height=1024, | |
output_width=1024, | |
sampler='flow_euler', | |
sample_steps=20, | |
guide_scale=3.5, | |
seed=-1, | |
history_io=None, | |
tar_index=0, | |
# align=0, | |
**kwargs): | |
input_image, input_mask = image, mask | |
seed = seed if seed >= 0 else random.randint(0, 2**32 - 1) | |
if input_image is not None: | |
# assert isinstance(input_image, list) and isinstance(input_mask, list) | |
if task is None: | |
task = [''] * len(input_image) | |
if not isinstance(prompt, list): | |
prompt = [prompt] * len(input_image) | |
prompt = [ | |
pp.replace('{image}', f'{{image{i}}}') if i > 0 else pp | |
for i, pp in enumerate(prompt) | |
] | |
edit_image, edit_image_mask = process_edit_image( | |
input_image, input_mask, task) | |
image = torch.zeros( | |
size=[3, int(output_height), | |
int(output_width)]) | |
image_mask = torch.ones( | |
size=[1, int(output_height), | |
int(output_width)]) | |
edit_image, edit_image_mask = [edit_image], [edit_image_mask] | |
else: | |
edit_image = edit_image_mask = [[]] | |
image = torch.zeros( | |
size=[3, int(output_height), | |
int(output_width)]) | |
image_mask = torch.ones( | |
size=[1, int(output_height), | |
int(output_width)]) | |
if not isinstance(prompt, list): | |
prompt = [prompt] | |
align = 0 | |
image, image_mask, prompt = [image], [image_mask], [prompt], | |
align = [align for p in prompt] if isinstance(align, int) else align | |
assert check_list_of_list(prompt) and check_list_of_list( | |
edit_image) and check_list_of_list(edit_image_mask) | |
# negative prompt is not used | |
image = to_device(image) | |
ctx = {} | |
# Get Noise Shape | |
self.dynamic_load(self.first_stage_model, 'first_stage_model') | |
x = self.encode_first_stage(image) | |
self.dynamic_unload(self.first_stage_model, | |
'first_stage_model', | |
skip_loaded=not self.use_dynamic_model) | |
g = torch.Generator(device=we.device_id).manual_seed(seed) | |
noise = [ | |
torch.randn((1, 16, i.shape[2], i.shape[3]), device=we.device_id, dtype=torch.bfloat16).normal_(generator=g) | |
for i in x | |
] | |
# import pdb;pdb.set_trace() | |
noise, x_shapes = pack_imagelist_into_tensor(noise) | |
ctx['x_shapes'] = x_shapes | |
ctx['align'] = align | |
image_mask = to_device(image_mask, strict=False) | |
cond_mask = [self.interpolate_func(i) for i in image_mask | |
] if image_mask is not None else [None] * len(image) | |
ctx['x_mask'] = cond_mask | |
# Encode Prompt | |
instruction_prompt = [[pp[-1]] if "{image}" in pp[-1] else ["{image} " + pp[-1]] for pp in prompt] | |
self.dynamic_load(self.cond_stage_model, 'cond_stage_model') | |
function_name, dtype = self.get_function_info(self.cond_stage_model) | |
cont = getattr(get_model(self.cond_stage_model), function_name)(instruction_prompt) | |
cont["context"] = [ct[-1] for ct in cont["context"]] | |
cont["y"] = [ct[-1] for ct in cont["y"]] | |
self.dynamic_unload(self.cond_stage_model, | |
'cond_stage_model', | |
skip_loaded=not self.use_dynamic_model) | |
ctx.update(cont) | |
# Encode Edit Images | |
self.dynamic_load(self.first_stage_model, 'first_stage_model') | |
edit_image = [to_device(i, strict=False) for i in edit_image] | |
edit_image_mask = [to_device(i, strict=False) for i in edit_image_mask] | |
e_img, e_mask = [], [] | |
for u, m in zip(edit_image, edit_image_mask): | |
if u is None: | |
continue | |
if m is None: | |
m = [None] * len(u) | |
e_img.append(self.encode_first_stage(u, **kwargs)) | |
e_mask.append([self.interpolate_func(i) for i in m]) | |
self.dynamic_unload(self.first_stage_model, | |
'first_stage_model', | |
skip_loaded=not self.use_dynamic_model) | |
ctx['edit'] = e_img | |
ctx['edit_mask'] = e_mask | |
# Encode Ref Images | |
if guide_scale is not None: | |
guide_scale = torch.full((noise.shape[0],), guide_scale, device=noise.device, dtype=noise.dtype) | |
else: | |
guide_scale = None | |
# Diffusion Process | |
self.dynamic_load(self.diffusion_model, 'diffusion_model') | |
function_name, dtype = self.get_function_info(self.diffusion_model) | |
with torch.autocast('cuda', | |
enabled=dtype in ('float16', 'bfloat16'), | |
dtype=getattr(torch, dtype)): | |
latent = self.diffusion.sample( | |
noise=noise, | |
sampler=sampler, | |
model=get_model(self.diffusion_model), | |
model_kwargs={ | |
"cond": ctx, "guidance": guide_scale, "gc_seg": -1 | |
}, | |
steps=sample_steps, | |
show_progress=True, | |
guide_scale=guide_scale, | |
return_intermediate=None, | |
reverse_scale=-1, | |
**kwargs).float() | |
if self.use_dynamic_model: self.dynamic_unload(self.diffusion_model, | |
'diffusion_model', | |
skip_loaded=not self.use_dynamic_model) | |
# Decode to Pixel Space | |
self.dynamic_load(self.first_stage_model, 'first_stage_model') | |
samples = unpack_tensor_into_imagelist(latent, x_shapes) | |
x_samples = self.decode_first_stage(samples) | |
self.dynamic_unload(self.first_stage_model, | |
'first_stage_model', | |
skip_loaded=not self.use_dynamic_model) | |
x_samples = [x.squeeze(0) for x in x_samples] | |
imgs = [ | |
torch.clamp((x_i.float() + 1.0) / 2.0, | |
min=0.0, | |
max=1.0).squeeze(0).permute(1, 2, 0).cpu().numpy() | |
for x_i in x_samples | |
] | |
imgs = [Image.fromarray((img * 255).astype(np.uint8)) for img in imgs] | |
return imgs | |