ACE-Plus / modules /flux.py
chaojiemao's picture
modify ace plus
d1a539d
raw
history blame
38.6 kB
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
# This file contains code that is adapted from
# https://github.com/black-forest-labs/flux.git
import math
import torch
from torch import Tensor, nn
from collections import OrderedDict
from functools import partial
from einops import rearrange, repeat
from scepter.modules.model.base_model import BaseModel
from scepter.modules.model.registry import BACKBONES
from scepter.modules.utils.config import dict_to_yaml
from scepter.modules.utils.distribute import we
from scepter.modules.utils.file_system import FS
from torch.utils.checkpoint import checkpoint_sequential
from torch.nn.utils.rnn import pad_sequence
from .layers import (DoubleStreamBlock, EmbedND, LastLayer, MLPEmbedder,
SingleStreamBlock, timestep_embedding)
@BACKBONES.register_class()
class Flux(BaseModel):
"""
Transformer backbone Diffusion model with RoPE.
"""
para_dict = {
'IN_CHANNELS': {
'value': 64,
'description': "model's input channels."
},
'OUT_CHANNELS': {
'value': 64,
'description': "model's output channels."
},
'HIDDEN_SIZE': {
'value': 1024,
'description': "model's hidden size."
},
'NUM_HEADS': {
'value': 16,
'description': 'number of heads in the transformer.'
},
'AXES_DIM': {
'value': [16, 56, 56],
'description': 'dimensions of the axes of the positional encoding.'
},
'THETA': {
'value': 10_000,
'description': 'theta for positional encoding.'
},
'VEC_IN_DIM': {
'value': 768,
'description': 'dimension of the vector input.'
},
'GUIDANCE_EMBED': {
'value': False,
'description': 'whether to use guidance embedding.'
},
'CONTEXT_IN_DIM': {
'value': 4096,
'description': 'dimension of the context input.'
},
'MLP_RATIO': {
'value': 4.0,
'description': 'ratio of mlp hidden size to hidden size.'
},
'QKV_BIAS': {
'value': True,
'description': 'whether to use bias in qkv projection.'
},
'DEPTH': {
'value': 19,
'description': 'number of transformer blocks.'
},
'DEPTH_SINGLE_BLOCKS': {
'value':
38,
'description':
'number of transformer blocks in the single stream block.'
},
'USE_GRAD_CHECKPOINT': {
'value': False,
'description': 'whether to use gradient checkpointing.'
}
}
def __init__(self, cfg, logger=None):
super().__init__(cfg, logger=logger)
self.in_channels = cfg.IN_CHANNELS
self.out_channels = cfg.get('OUT_CHANNELS', self.in_channels)
hidden_size = cfg.get('HIDDEN_SIZE', 1024)
num_heads = cfg.get('NUM_HEADS', 16)
axes_dim = cfg.AXES_DIM
theta = cfg.THETA
vec_in_dim = cfg.VEC_IN_DIM
self.guidance_embed = cfg.GUIDANCE_EMBED
context_in_dim = cfg.CONTEXT_IN_DIM
mlp_ratio = cfg.MLP_RATIO
qkv_bias = cfg.QKV_BIAS
depth = cfg.DEPTH
depth_single_blocks = cfg.DEPTH_SINGLE_BLOCKS
self.use_grad_checkpoint = cfg.get("USE_GRAD_CHECKPOINT", False)
self.attn_backend = cfg.get("ATTN_BACKEND", "pytorch")
self.cache_pretrain_model = cfg.get("CACHE_PRETRAIN_MODEL", False)
self.lora_model = cfg.get("DIFFUSERS_LORA_MODEL", None)
self.comfyui_lora_model = cfg.get("COMFYUI_LORA_MODEL", None)
self.swift_lora_model = cfg.get("SWIFT_LORA_MODEL", None)
self.blackforest_lora_model = cfg.get("BLACKFOREST_LORA_MODEL", None)
self.pretrain_adapter = cfg.get("PRETRAIN_ADAPTER", None)
if hidden_size % num_heads != 0:
raise ValueError(
f"Hidden size {hidden_size} must be divisible by num_heads {num_heads}"
)
pe_dim = hidden_size // num_heads
if sum(axes_dim) != pe_dim:
raise ValueError(
f"Got {axes_dim} but expected positional dim {pe_dim}")
self.hidden_size = hidden_size
self.num_heads = num_heads
self.pe_embedder = EmbedND(dim=pe_dim, theta=theta, axes_dim=axes_dim)
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
self.vector_in = MLPEmbedder(vec_in_dim, self.hidden_size)
self.guidance_in = (MLPEmbedder(in_dim=256,
hidden_dim=self.hidden_size)
if self.guidance_embed else nn.Identity())
self.txt_in = nn.Linear(context_in_dim, self.hidden_size)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
backend=self.attn_backend
)
for _ in range(depth)
]
)
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=mlp_ratio, backend=self.attn_backend)
for _ in range(depth_single_blocks)
]
)
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
def prepare_input(self, x, context, y, x_shape=None):
# x.shape [6, 16, 16, 16] target is [6, 16, 768, 1360]
bs, c, h, w = x.shape
x = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
x_id = torch.zeros(h // 2, w // 2, 3)
x_id[..., 1] = x_id[..., 1] + torch.arange(h // 2)[:, None]
x_id[..., 2] = x_id[..., 2] + torch.arange(w // 2)[None, :]
x_ids = repeat(x_id, "h w c -> b (h w) c", b=bs)
txt_ids = torch.zeros(bs, context.shape[1], 3)
return x, x_ids.to(x), context.to(x), txt_ids.to(x), y.to(x), h, w
def unpack(self, x: Tensor, height: int, width: int) -> Tensor:
return rearrange(
x,
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
h=math.ceil(height/2),
w=math.ceil(width/2),
ph=2,
pw=2,
)
def merge_diffuser_lora(self, ori_sd, lora_sd, scale=1.0):
key_map = {
"single_blocks.{}.linear1.weight": {"key_list": [
["transformer.single_transformer_blocks.{}.attn.to_q.lora_A.weight",
"transformer.single_transformer_blocks.{}.attn.to_q.lora_B.weight", [0, 3072]],
["transformer.single_transformer_blocks.{}.attn.to_k.lora_A.weight",
"transformer.single_transformer_blocks.{}.attn.to_k.lora_B.weight", [3072, 6144]],
["transformer.single_transformer_blocks.{}.attn.to_v.lora_A.weight",
"transformer.single_transformer_blocks.{}.attn.to_v.lora_B.weight", [6144, 9216]],
["transformer.single_transformer_blocks.{}.proj_mlp.lora_A.weight",
"transformer.single_transformer_blocks.{}.proj_mlp.lora_B.weight", [9216, 21504]]
], "num": 38},
"single_blocks.{}.modulation.lin.weight": {"key_list": [
["transformer.single_transformer_blocks.{}.norm.linear.lora_A.weight",
"transformer.single_transformer_blocks.{}.norm.linear.lora_B.weight", [0, 9216]],
], "num": 38},
"single_blocks.{}.linear2.weight": {"key_list": [
["transformer.single_transformer_blocks.{}.proj_out.lora_A.weight",
"transformer.single_transformer_blocks.{}.proj_out.lora_B.weight", [0, 3072]],
], "num": 38},
"double_blocks.{}.txt_attn.qkv.weight": {"key_list": [
["transformer.transformer_blocks.{}.attn.add_q_proj.lora_A.weight",
"transformer.transformer_blocks.{}.attn.add_q_proj.lora_B.weight", [0, 3072]],
["transformer.transformer_blocks.{}.attn.add_k_proj.lora_A.weight",
"transformer.transformer_blocks.{}.attn.add_k_proj.lora_B.weight", [3072, 6144]],
["transformer.transformer_blocks.{}.attn.add_v_proj.lora_A.weight",
"transformer.transformer_blocks.{}.attn.add_v_proj.lora_B.weight", [6144, 9216]],
], "num": 19},
"double_blocks.{}.img_attn.qkv.weight": {"key_list": [
["transformer.transformer_blocks.{}.attn.to_q.lora_A.weight",
"transformer.transformer_blocks.{}.attn.to_q.lora_B.weight", [0, 3072]],
["transformer.transformer_blocks.{}.attn.to_k.lora_A.weight",
"transformer.transformer_blocks.{}.attn.to_k.lora_B.weight", [3072, 6144]],
["transformer.transformer_blocks.{}.attn.to_v.lora_A.weight",
"transformer.transformer_blocks.{}.attn.to_v.lora_B.weight", [6144, 9216]],
], "num": 19},
"double_blocks.{}.img_attn.proj.weight": {"key_list": [
["transformer.transformer_blocks.{}.attn.to_out.0.lora_A.weight",
"transformer.transformer_blocks.{}.attn.to_out.0.lora_B.weight", [0, 3072]]
], "num": 19},
"double_blocks.{}.txt_attn.proj.weight": {"key_list": [
["transformer.transformer_blocks.{}.attn.to_add_out.lora_A.weight",
"transformer.transformer_blocks.{}.attn.to_add_out.lora_B.weight", [0, 3072]]
], "num": 19},
"double_blocks.{}.img_mlp.0.weight": {"key_list": [
["transformer.transformer_blocks.{}.ff.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.{}.ff.net.0.proj.lora_B.weight", [0, 12288]]
], "num": 19},
"double_blocks.{}.img_mlp.2.weight": {"key_list": [
["transformer.transformer_blocks.{}.ff.net.2.lora_A.weight",
"transformer.transformer_blocks.{}.ff.net.2.lora_B.weight", [0, 3072]]
], "num": 19},
"double_blocks.{}.txt_mlp.0.weight": {"key_list": [
["transformer.transformer_blocks.{}.ff_context.net.0.proj.lora_A.weight",
"transformer.transformer_blocks.{}.ff_context.net.0.proj.lora_B.weight", [0, 12288]]
], "num": 19},
"double_blocks.{}.txt_mlp.2.weight": {"key_list": [
["transformer.transformer_blocks.{}.ff_context.net.2.lora_A.weight",
"transformer.transformer_blocks.{}.ff_context.net.2.lora_B.weight", [0, 3072]]
], "num": 19},
"double_blocks.{}.img_mod.lin.weight": {"key_list": [
["transformer.transformer_blocks.{}.norm1.linear.lora_A.weight",
"transformer.transformer_blocks.{}.norm1.linear.lora_B.weight", [0, 18432]]
], "num": 19},
"double_blocks.{}.txt_mod.lin.weight": {"key_list": [
["transformer.transformer_blocks.{}.norm1_context.linear.lora_A.weight",
"transformer.transformer_blocks.{}.norm1_context.linear.lora_B.weight", [0, 18432]]
], "num": 19}
}
cover_lora_keys = set()
cover_ori_keys = set()
for k, v in key_map.items():
key_list = v["key_list"]
block_num = v["num"]
for block_id in range(block_num):
for k_list in key_list:
if k_list[0].format(block_id) in lora_sd and k_list[1].format(block_id) in lora_sd:
cover_lora_keys.add(k_list[0].format(block_id))
cover_lora_keys.add(k_list[1].format(block_id))
current_weight = torch.matmul(lora_sd[k_list[0].format(block_id)].permute(1, 0),
lora_sd[k_list[1].format(block_id)].permute(1, 0)).permute(1, 0)
ori_sd[k.format(block_id)][k_list[2][0]:k_list[2][1], ...] += scale * current_weight
cover_ori_keys.add(k.format(block_id))
# lora_sd.pop(k_list[0].format(block_id))
# lora_sd.pop(k_list[1].format(block_id))
self.logger.info(f"merge_blackforest_lora loads lora'parameters lora-paras: \n"
f"cover-{len(cover_lora_keys)} vs total {len(lora_sd)} \n"
f"cover ori-{len(cover_ori_keys)} vs total {len(ori_sd)}")
return ori_sd
def merge_swift_lora(self, ori_sd, lora_sd, scale = 1.0):
have_lora_keys = {}
for k, v in lora_sd.items():
k = k[len("model."):] if k.startswith("model.") else k
ori_key = k.split("lora")[0] + "weight"
if ori_key not in ori_sd:
raise f"{ori_key} should in the original statedict"
if ori_key not in have_lora_keys:
have_lora_keys[ori_key] = {}
if "lora_A" in k:
have_lora_keys[ori_key]["lora_A"] = v
elif "lora_B" in k:
have_lora_keys[ori_key]["lora_B"] = v
else:
raise NotImplementedError
self.logger.info(f"merge_swift_lora loads lora'parameters {len(have_lora_keys)}")
for key, v in have_lora_keys.items():
current_weight = torch.matmul(v["lora_A"].permute(1, 0), v["lora_B"].permute(1, 0)).permute(1, 0)
ori_sd[key] += scale * current_weight
return ori_sd
def merge_blackforest_lora(self, ori_sd, lora_sd, scale = 1.0):
have_lora_keys = {}
cover_lora_keys = set()
cover_ori_keys = set()
for k, v in lora_sd.items():
if "lora" in k:
ori_key = k.split("lora")[0] + "weight"
if ori_key not in ori_sd:
raise f"{ori_key} should in the original statedict"
if ori_key not in have_lora_keys:
have_lora_keys[ori_key] = {}
if "lora_A" in k:
have_lora_keys[ori_key]["lora_A"] = v
cover_lora_keys.add(k)
cover_ori_keys.add(ori_key)
elif "lora_B" in k:
have_lora_keys[ori_key]["lora_B"] = v
cover_lora_keys.add(k)
cover_ori_keys.add(ori_key)
else:
if k in ori_sd:
ori_sd[k] = v
cover_lora_keys.add(k)
cover_ori_keys.add(k)
else:
print("unsurpport keys: ", k)
self.logger.info(f"merge_blackforest_lora loads lora'parameters lora-paras: \n"
f"cover-{len(cover_lora_keys)} vs total {len(lora_sd)} \n"
f"cover ori-{len(cover_ori_keys)} vs total {len(ori_sd)}")
for key, v in have_lora_keys.items():
current_weight = torch.matmul(v["lora_A"].permute(1, 0), v["lora_B"].permute(1, 0)).permute(1, 0)
# print(key, ori_sd[key].shape, current_weight.shape)
ori_sd[key] += scale * current_weight
return ori_sd
def merge_comfyui_lora(self, ori_sd, lora_sd, scale = 1.0):
ori_key_map = {key.replace("_", ".") : key for key in ori_sd.keys()}
parse_ckpt = OrderedDict()
for k, v in lora_sd.items():
if "alpha" in k:
continue
k = k.replace("lora_unet_", "").replace("_", ".")
map_k = ori_key_map[k.split(".lora")[0] + ".weight"]
if map_k not in parse_ckpt:
parse_ckpt[map_k] = {}
if "lora.up" in k:
parse_ckpt[map_k]["lora_up"] = v
elif "lora.down" in k:
parse_ckpt[map_k]["lora_down"] = v
if self.cache_pretrain_model:
self.lora_dict[self.comfyui_lora_model] = {}
for key, v in parse_ckpt.items():
current_weight = torch.matmul(v["lora_down"].permute(1, 0), v["lora_up"].permute(1, 0)).permute(1, 0)
self.lora_dict[self.comfyui_lora_model] = current_weight
ori_sd[key] += scale * current_weight
return ori_sd
def easy_lora_merge(self, ori_sd, lora_sd, scale = 1.0):
for key, v in lora_sd.items():
ori_sd[key] += scale * v
return ori_sd
def load_pretrained_model(self, pretrained_model, lora_scale = 1.0):
if next(self.parameters()).device.type == 'meta':
map_location = torch.device(we.device_id)
safe_device = we.device_id
else:
map_location = "cpu"
safe_device = "cpu"
if pretrained_model is not None:
if not hasattr(self, "ckpt"):
with FS.get_from(pretrained_model, wait_finish=True) as local_model:
if local_model.endswith('safetensors'):
from safetensors.torch import load_file as load_safetensors
ckpt = load_safetensors(local_model, device=safe_device)
else:
ckpt = torch.load(local_model, map_location=map_location, weights_only=True)
if "state_dict" in ckpt:
ckpt = ckpt["state_dict"]
if "model" in ckpt:
ckpt = ckpt["model"]["model"]
if self.cache_pretrain_model:
self.ckpt = ckpt
self.lora_dict = {}
else:
ckpt = self.ckpt
new_ckpt = OrderedDict()
for k, v in ckpt.items():
if k in ("img_in.weight"):
model_p = self.state_dict()[k]
if v.shape != model_p.shape:
expanded_state_dict_weight = torch.zeros_like(model_p, device=v.device)
slices = tuple(slice(0, dim) for dim in v.shape)
expanded_state_dict_weight[slices] = v
new_ckpt[k] = expanded_state_dict_weight
else:
new_ckpt[k] = v
else:
new_ckpt[k] = v
if self.lora_model is not None:
with FS.get_from(self.lora_model, wait_finish=True) as local_model:
if local_model.endswith('safetensors'):
from safetensors.torch import load_file as load_safetensors
lora_sd = load_safetensors(local_model, device=safe_device)
else:
lora_sd = torch.load(local_model, map_location=map_location, weights_only=True)
new_ckpt = self.merge_diffuser_lora(new_ckpt, lora_sd, scale=lora_scale)
if self.swift_lora_model is not None:
if not isinstance(self.swift_lora_model, list):
self.swift_lora_model = [(self.swift_lora_model, 1.0)]
for lora_model in self.swift_lora_model:
if isinstance(lora_model, str):
lora_model = (lora_model, 1.0/len(self.swift_lora_model))
print(lora_model)
self.logger.info(f"load swift lora model: {lora_model}")
with FS.get_from(lora_model[0], wait_finish=True) as local_model:
if local_model.endswith('safetensors'):
from safetensors.torch import load_file as load_safetensors
lora_sd = load_safetensors(local_model, device=safe_device)
else:
lora_sd = torch.load(local_model, map_location=map_location, weights_only=True)
new_ckpt = self.merge_swift_lora(new_ckpt, lora_sd, scale=lora_model[1])
if self.blackforest_lora_model is not None:
with FS.get_from(self.blackforest_lora_model, wait_finish=True) as local_model:
if local_model.endswith('safetensors'):
from safetensors.torch import load_file as load_safetensors
lora_sd = load_safetensors(local_model, device=safe_device)
else:
lora_sd = torch.load(local_model, map_location=map_location, weights_only=True)
new_ckpt = self.merge_blackforest_lora(new_ckpt, lora_sd, scale=lora_scale)
if self.comfyui_lora_model is not None:
if hasattr(self, "current_lora") and self.current_lora == self.comfyui_lora_model:
return
if hasattr(self, "lora_dict") and self.comfyui_lora_model in self.lora_dict:
new_ckpt = self.easy_lora_merge(new_ckpt, self.lora_dict[self.comfyui_lora_model], scale=lora_scale)
else:
with FS.get_from(self.comfyui_lora_model, wait_finish=True) as local_model:
if local_model.endswith('safetensors'):
from safetensors.torch import load_file as load_safetensors
lora_sd = load_safetensors(local_model, device=safe_device)
else:
lora_sd = torch.load(local_model, map_location=map_location, weights_only=True)
new_ckpt = self.merge_comfyui_lora(new_ckpt, lora_sd, scale=lora_scale)
if self.comfyui_lora_model:
self.current_lora = self.comfyui_lora_model
adapter_ckpt = {}
if self.pretrain_adapter is not None:
with FS.get_from(self.pretrain_adapter, wait_finish=True) as local_adapter:
if local_adapter.endswith('safetensors'):
from safetensors.torch import load_file as load_safetensors
adapter_ckpt = load_safetensors(local_adapter, device=safe_device)
else:
adapter_ckpt = torch.load(local_adapter, map_location=map_location, weights_only=True)
new_ckpt.update(adapter_ckpt)
missing, unexpected = self.load_state_dict(new_ckpt, strict=False, assign=True)
self.logger.info(
f'Restored from {pretrained_model} with {len(missing)} missing and {len(unexpected)} unexpected keys'
)
if len(missing) > 0:
self.logger.info(f'Missing Keys:\n {missing}')
if len(unexpected) > 0:
self.logger.info(f'\nUnexpected Keys:\n {unexpected}')
def forward(
self,
x: Tensor,
t: Tensor,
cond: dict = {},
guidance: Tensor | None = None,
gc_seg: int = 0
) -> Tensor:
x, x_ids, txt, txt_ids, y, h, w = self.prepare_input(x, cond["context"], cond["y"])
# running on sequences img
x = self.img_in(x)
vec = self.time_in(timestep_embedding(t, 256))
if self.guidance_embed:
if guidance is None:
raise ValueError("Didn't get guidance strength for guidance distilled model.")
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
vec = vec + self.vector_in(y)
txt = self.txt_in(txt)
ids = torch.cat((txt_ids, x_ids), dim=1)
pe = self.pe_embedder(ids)
kwargs = dict(
vec=vec,
pe=pe,
txt_length=txt.shape[1],
)
x = torch.cat((txt, x), 1)
if self.use_grad_checkpoint and gc_seg >= 0:
x = checkpoint_sequential(
functions=[partial(block, **kwargs) for block in self.double_blocks],
segments=gc_seg if gc_seg > 0 else len(self.double_blocks),
input=x,
use_reentrant=False
)
else:
for block in self.double_blocks:
x = block(x, **kwargs)
kwargs = dict(
vec=vec,
pe=pe,
)
if self.use_grad_checkpoint and gc_seg >= 0:
x = checkpoint_sequential(
functions=[partial(block, **kwargs) for block in self.single_blocks],
segments=gc_seg if gc_seg > 0 else len(self.single_blocks),
input=x,
use_reentrant=False
)
else:
for block in self.single_blocks:
x = block(x, **kwargs)
x = x[:, txt.shape[1] :, ...]
x = self.final_layer(x, vec) # (N, T, patch_size ** 2 * out_channels) 6 64 64
x = self.unpack(x, h, w)
return x
@staticmethod
def get_config_template():
return dict_to_yaml('BACKBONE',
__class__.__name__,
Flux.para_dict,
set_name=True)
@BACKBONES.register_class()
class FluxMR(Flux):
def prepare_input(self, x, cond):
if isinstance(cond['context'], list):
context, y = torch.cat(cond["context"], dim=0).to(x), torch.cat(cond["y"], dim=0).to(x)
else:
context, y = cond['context'].to(x), cond['y'].to(x)
batch_frames, batch_frames_ids = [], []
for ix, shape in zip(x, cond["x_shapes"]):
# unpack image from sequence
ix = ix[:, :shape[0] * shape[1]].view(-1, shape[0], shape[1])
c, h, w = ix.shape
ix = rearrange(ix, "c (h ph) (w pw) -> (h w) (c ph pw)", ph=2, pw=2)
ix_id = torch.zeros(h // 2, w // 2, 3)
ix_id[..., 1] = ix_id[..., 1] + torch.arange(h // 2)[:, None]
ix_id[..., 2] = ix_id[..., 2] + torch.arange(w // 2)[None, :]
ix_id = rearrange(ix_id, "h w c -> (h w) c")
batch_frames.append([ix])
batch_frames_ids.append([ix_id])
x_list, x_id_list, mask_x_list, x_seq_length = [], [], [], []
for frames, frame_ids in zip(batch_frames, batch_frames_ids):
proj_frames = []
for idx, one_frame in enumerate(frames):
one_frame = self.img_in(one_frame)
proj_frames.append(one_frame)
ix = torch.cat(proj_frames, dim=0)
if_id = torch.cat(frame_ids, dim=0)
x_list.append(ix)
x_id_list.append(if_id)
mask_x_list.append(torch.ones(ix.shape[0]).to(ix.device, non_blocking=True).bool())
x_seq_length.append(ix.shape[0])
x = pad_sequence(tuple(x_list), batch_first=True)
x_ids = pad_sequence(tuple(x_id_list), batch_first=True).to(x) # [b,pad_seq,2] pad (0.,0.) at dim2
mask_x = pad_sequence(tuple(mask_x_list), batch_first=True)
txt = self.txt_in(context)
txt_ids = torch.zeros(context.shape[0], context.shape[1], 3).to(x)
mask_txt = torch.ones(context.shape[0], context.shape[1]).to(x.device, non_blocking=True).bool()
return x, x_ids, txt, txt_ids, y, mask_x, mask_txt, x_seq_length
def unpack(self, x: Tensor, cond: dict = None, x_seq_length: list = None) -> Tensor:
x_list = []
image_shapes = cond["x_shapes"]
for u, shape, seq_length in zip(x, image_shapes, x_seq_length):
height, width = shape
h, w = math.ceil(height / 2), math.ceil(width / 2)
u = rearrange(
u[seq_length-h*w:seq_length, ...],
"(h w) (c ph pw) -> (h ph w pw) c",
h=h,
w=w,
ph=2,
pw=2,
)
x_list.append(u)
x = pad_sequence(tuple(x_list), batch_first=True).permute(0, 2, 1)
return x
def forward(
self,
x: Tensor,
t: Tensor,
cond: dict = {},
guidance: Tensor | None = None,
gc_seg: int = 0,
**kwargs
) -> Tensor:
x, x_ids, txt, txt_ids, y, mask_x, mask_txt, seq_length_list = self.prepare_input(x, cond)
# running on sequences img
vec = self.time_in(timestep_embedding(t, 256))
if self.guidance_embed and guidance[-1] >= 0:
if guidance is None:
raise ValueError("Didn't get guidance strength for guidance distilled model.")
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
vec = vec + self.vector_in(y)
ids = torch.cat((txt_ids, x_ids), dim=1)
pe = self.pe_embedder(ids)
mask_aside = torch.cat((mask_txt, mask_x), dim=1)
mask = mask_aside[:, None, :] * mask_aside[:, :, None]
kwargs = dict(
vec=vec,
pe=pe,
mask=mask,
txt_length = txt.shape[1],
)
x = torch.cat((txt, x), 1)
if self.use_grad_checkpoint and gc_seg >= 0:
x = checkpoint_sequential(
functions=[partial(block, **kwargs) for block in self.double_blocks],
segments=gc_seg if gc_seg > 0 else len(self.double_blocks),
input=x,
use_reentrant=False
)
else:
for block in self.double_blocks:
x = block(x, **kwargs)
kwargs = dict(
vec=vec,
pe=pe,
mask=mask,
)
if self.use_grad_checkpoint and gc_seg >= 0:
x = checkpoint_sequential(
functions=[partial(block, **kwargs) for block in self.single_blocks],
segments=gc_seg if gc_seg > 0 else len(self.single_blocks),
input=x,
use_reentrant=False
)
else:
for block in self.single_blocks:
x = block(x, **kwargs)
x = x[:, txt.shape[1]:, ...]
x = self.final_layer(x, vec) # (N, T, patch_size ** 2 * out_channels) 6 64 64
x = self.unpack(x, cond, seq_length_list)
return x
@staticmethod
def get_config_template():
return dict_to_yaml('MODEL',
__class__.__name__,
FluxMR.para_dict,
set_name=True)
@BACKBONES.register_class()
class FluxMRACEPlus(FluxMR):
def __init__(self, cfg, logger = None):
super().__init__(cfg, logger)
def prepare_input(self, x, cond):
context, y = cond["context"], cond["y"]
batch_frames, batch_frames_ids = [], []
for ix, shape, imask, ie, ie_mask in zip(x,
cond['x_shapes'],
cond['x_mask'],
cond['edit'],
cond['edit_mask']):
# unpack image from sequence
ix = ix[:, :shape[0] * shape[1]].view(-1, shape[0], shape[1])
imask = torch.ones_like(
ix[[0], :, :]) if imask is None else imask.squeeze(0)
if len(ie) > 0:
ie = [iie.squeeze(0) for iie in ie]
ie_mask = [
torch.ones(
(ix.shape[0] * 4, ix.shape[1],
ix.shape[2])) if iime is None else iime.squeeze(0)
for iime in ie_mask
]
ie = torch.cat(ie, dim=-1)
ie_mask = torch.cat(ie_mask, dim=-1)
else:
ie, ie_mask = torch.zeros_like(ix).to(x), torch.ones_like(
imask).to(x),
ix = torch.cat([ix, ie, ie_mask], dim=0)
c, h, w = ix.shape
ix = rearrange(ix,
'c (h ph) (w pw) -> (h w) (c ph pw)',
ph=2,
pw=2)
ix_id = torch.zeros(h // 2, w // 2, 3)
ix_id[..., 1] = ix_id[..., 1] + torch.arange(h // 2)[:, None]
ix_id[..., 2] = ix_id[..., 2] + torch.arange(w // 2)[None, :]
ix_id = rearrange(ix_id, 'h w c -> (h w) c')
batch_frames.append([ix])
batch_frames_ids.append([ix_id])
x_list, x_id_list, mask_x_list, x_seq_length = [], [], [], []
for frames, frame_ids in zip(batch_frames, batch_frames_ids):
proj_frames = []
for idx, one_frame in enumerate(frames):
one_frame = self.img_in(one_frame)
proj_frames.append(one_frame)
ix = torch.cat(proj_frames, dim=0)
if_id = torch.cat(frame_ids, dim=0)
x_list.append(ix)
x_id_list.append(if_id)
mask_x_list.append(torch.ones(ix.shape[0]).to(ix.device, non_blocking=True).bool())
x_seq_length.append(ix.shape[0])
# if len(x_list) < 1: import pdb;pdb.set_trace()
x = pad_sequence(tuple(x_list), batch_first=True)
x_ids = pad_sequence(tuple(x_id_list), batch_first=True).to(x) # [b,pad_seq,2] pad (0.,0.) at dim2
mask_x = pad_sequence(tuple(mask_x_list), batch_first=True)
if isinstance(context, list):
txt_list, mask_txt_list, y_list = [], [], []
for sample_id, (ctx, yy) in enumerate(zip(context, y)):
txt_list.append(self.txt_in(ctx.to(x)))
mask_txt_list.append(torch.ones(txt_list[-1].shape[0]).to(ctx.device, non_blocking=True).bool())
y_list.append(yy.to(x))
txt = pad_sequence(tuple(txt_list), batch_first=True)
txt_ids = torch.zeros(txt.shape[0], txt.shape[1], 3).to(x)
mask_txt = pad_sequence(tuple(mask_txt_list), batch_first=True)
y = torch.cat(y_list, dim=0)
assert y.ndim == 2 and txt.ndim == 3
else:
txt = self.txt_in(context)
txt_ids = torch.zeros(context.shape[0], context.shape[1], 3).to(x)
mask_txt = torch.ones(context.shape[0], context.shape[1]).to(x.device, non_blocking=True).bool()
return x, x_ids, txt, txt_ids, y, mask_x, mask_txt, x_seq_length
@staticmethod
def get_config_template():
return dict_to_yaml('MODEL',
__class__.__name__,
FluxMRACEPlus.para_dict,
set_name=True)
@BACKBONES.register_class()
class FluxMRModiACEPlus(FluxMR):
def __init__(self, cfg, logger = None):
super().__init__(cfg, logger)
def prepare_input(self, x, cond):
context, y = cond["context"], cond["y"]
batch_frames, batch_frames_ids = [], []
for ix, shape, imask, ie, im, ie_mask in zip(x,
cond['x_shapes'],
cond['x_mask'],
cond['edit'],
cond['modify'],
cond['edit_mask']):
# unpack image from sequence
ix = ix[:, :shape[0] * shape[1]].view(-1, shape[0], shape[1])
imask = torch.ones_like(
ix[[0], :, :]) if imask is None else imask.squeeze(0)
if len(ie) > 0:
ie = [iie.squeeze(0) for iie in ie]
im = [iim.squeeze(0) for iim in im]
ie_mask = [
torch.ones(
(ix.shape[0] * 4, ix.shape[1],
ix.shape[2])) if iime is None else iime.squeeze(0)
for iime in ie_mask
]
im = torch.cat(im, dim=-1)
ie = torch.cat(ie, dim=-1)
ie_mask = torch.cat(ie_mask, dim=-1)
else:
ie, im, ie_mask = torch.zeros_like(ix).to(x), torch.zeros_like(ix).to(x), torch.ones_like(
imask).to(x),
ix = torch.cat([ix, ie, im, ie_mask], dim=0)
c, h, w = ix.shape
ix = rearrange(ix,
'c (h ph) (w pw) -> (h w) (c ph pw)',
ph=2,
pw=2)
ix_id = torch.zeros(h // 2, w // 2, 3)
ix_id[..., 1] = ix_id[..., 1] + torch.arange(h // 2)[:, None]
ix_id[..., 2] = ix_id[..., 2] + torch.arange(w // 2)[None, :]
ix_id = rearrange(ix_id, 'h w c -> (h w) c')
batch_frames.append([ix])
batch_frames_ids.append([ix_id])
x_list, x_id_list, mask_x_list, x_seq_length = [], [], [], []
for frames, frame_ids in zip(batch_frames, batch_frames_ids):
proj_frames = []
for idx, one_frame in enumerate(frames):
one_frame = self.img_in(one_frame)
proj_frames.append(one_frame)
ix = torch.cat(proj_frames, dim=0)
if_id = torch.cat(frame_ids, dim=0)
x_list.append(ix)
x_id_list.append(if_id)
mask_x_list.append(torch.ones(ix.shape[0]).to(ix.device, non_blocking=True).bool())
x_seq_length.append(ix.shape[0])
# if len(x_list) < 1: import pdb;pdb.set_trace()
x = pad_sequence(tuple(x_list), batch_first=True)
x_ids = pad_sequence(tuple(x_id_list), batch_first=True).to(x) # [b,pad_seq,2] pad (0.,0.) at dim2
mask_x = pad_sequence(tuple(mask_x_list), batch_first=True)
if isinstance(context, list):
txt_list, mask_txt_list, y_list = [], [], []
for sample_id, (ctx, yy) in enumerate(zip(context, y)):
txt_list.append(self.txt_in(ctx.to(x)))
mask_txt_list.append(torch.ones(txt_list[-1].shape[0]).to(ctx.device, non_blocking=True).bool())
y_list.append(yy.to(x))
txt = pad_sequence(tuple(txt_list), batch_first=True)
txt_ids = torch.zeros(txt.shape[0], txt.shape[1], 3).to(x)
mask_txt = pad_sequence(tuple(mask_txt_list), batch_first=True)
y = torch.cat(y_list, dim=0)
assert y.ndim == 2 and txt.ndim == 3
else:
txt = self.txt_in(context)
txt_ids = torch.zeros(context.shape[0], context.shape[1], 3).to(x)
mask_txt = torch.ones(context.shape[0], context.shape[1]).to(x.device, non_blocking=True).bool()
return x, x_ids, txt, txt_ids, y, mask_x, mask_txt, x_seq_length
@staticmethod
def get_config_template():
return dict_to_yaml('MODEL',
__class__.__name__,
FluxMRACEPlus.para_dict,
set_name=True)