Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig | |
import gradio as gr | |
import spaces | |
model_id = "meta-llama/Llama-Guard-3-8B-INT8" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
dtype = torch.bfloat16 | |
quantization_config = BitsAndBytesConfig(load_in_8bit=True) | |
def load_model(): | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
torch_dtype=dtype, | |
device_map="auto", | |
quantization_config=quantization_config, | |
low_cpu_mem_usage=True | |
) | |
return tokenizer, model | |
tokenizer, model = load_model() | |
def moderate(user_input, assistant_response): | |
chat = [ | |
{"role": "user", "content": user_input}, | |
{"role": "assistant", "content": assistant_response}, | |
] | |
input_ids = tokenizer.apply_chat_template(chat, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
output = model.generate( | |
input_ids=input_ids, | |
max_new_tokens=200, | |
pad_token_id=tokenizer.eos_token_id, | |
do_sample=False | |
) | |
result = tokenizer.decode(output[0], skip_special_tokens=True) | |
result = result.split(assistant_response)[-1].strip() | |
is_safe = "safe" in result.lower() | |
categories = [] | |
if not is_safe and "categories:" in result: | |
categories = [cat.strip() for cat in result.split("categories:")[1].split(",") if cat.strip()] | |
return { | |
"is_safe": "Safe" if is_safe else "Unsafe", | |
"categories": ", ".join(categories) if categories else "None", | |
"raw_output": result | |
} | |
iface = gr.Interface( | |
fn=moderate, | |
inputs=[ | |
gr.Textbox(lines=3, label="User Input"), | |
gr.Textbox(lines=3, label="Assistant Response") | |
], | |
outputs=[ | |
gr.Textbox(label="Safety Status"), | |
gr.Textbox(label="Violated Categories"), | |
gr.Textbox(label="Raw Output") | |
], | |
title="Llama Guard Moderation", | |
description="Enter a user input and an assistant response to check for content moderation." | |
) | |
if __name__ == "__main__": | |
iface.launch() |