|
import os |
|
import cv2 |
|
import torch |
|
import gfpgan |
|
from PIL import Image |
|
from upscaler.RealESRGAN import RealESRGAN |
|
|
|
|
|
def gfpgan_runner(img, model): |
|
_, imgs, _ = model.enhance(img, paste_back=True, has_aligned=True) |
|
return imgs[0] |
|
|
|
|
|
def realesrgan_runner(img, model): |
|
img = model.predict(img) |
|
return img |
|
|
|
|
|
supported_enhancers = { |
|
"GFPGAN": ("./assets/pretrained_models/GFPGANv1.4.pth", gfpgan_runner), |
|
"REAL-ESRGAN 2x": ("./assets/pretrained_models/RealESRGAN_x2.pth", realesrgan_runner), |
|
"REAL-ESRGAN 4x": ("./assets/pretrained_models/RealESRGAN_x4.pth", realesrgan_runner), |
|
"REAL-ESRGAN 8x": ("./assets/pretrained_models/RealESRGAN_x8.pth", realesrgan_runner) |
|
} |
|
|
|
cv2_interpolations = ["LANCZOS4", "CUBIC", "NEAREST"] |
|
|
|
def get_available_enhancer_names(): |
|
available = [] |
|
for name, data in supported_enhancers.items(): |
|
path = os.path.join(os.path.abspath(os.path.dirname(__file__)), data[0]) |
|
if os.path.exists(path): |
|
available.append(name) |
|
return available |
|
|
|
|
|
def load_face_enhancer_model(name='GFPGAN', device="cpu"): |
|
assert name in get_available_enhancer_names() + cv2_interpolations, f"Face enhancer {name} unavailable." |
|
if name in supported_enhancers.keys(): |
|
model_path, model_runner = supported_enhancers.get(name) |
|
model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), model_path) |
|
if name == 'GFPGAN': |
|
model = gfpgan.GFPGANer(model_path=model_path, upscale=1, device=device) |
|
elif name == 'REAL-ESRGAN 2x': |
|
model = RealESRGAN(device, scale=2) |
|
model.load_weights(model_path, download=False) |
|
elif name == 'REAL-ESRGAN 4x': |
|
model = RealESRGAN(device, scale=4) |
|
model.load_weights(model_path, download=False) |
|
elif name == 'REAL-ESRGAN 8x': |
|
model = RealESRGAN(device, scale=8) |
|
model.load_weights(model_path, download=False) |
|
elif name == 'LANCZOS4': |
|
model = None |
|
model_runner = lambda img, _: cv2.resize(img, (512,512), interpolation=cv2.INTER_LANCZOS4) |
|
elif name == 'CUBIC': |
|
model = None |
|
model_runner = lambda img, _: cv2.resize(img, (512,512), interpolation=cv2.INTER_CUBIC) |
|
elif name == 'NEAREST': |
|
model = None |
|
model_runner = lambda img, _: cv2.resize(img, (512,512), interpolation=cv2.INTER_NEAREST) |
|
else: |
|
model = None |
|
return (model, model_runner) |
|
|