Kevin Fink
commited on
Commit
·
1554413
1
Parent(s):
c7cf3c2
dev
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
-
from transformers import Trainer, TrainingArguments, AutoTokenizer,
|
4 |
from transformers import DataCollatorForSeq2Seq
|
5 |
from datasets import load_dataset, concatenate_datasets, load_from_disk
|
6 |
import traceback
|
@@ -19,7 +19,7 @@ lora_config = LoraConfig(
|
|
19 |
lora_dropout=0.1, # Dropout for LoRA layers
|
20 |
bias="none" # Bias handling
|
21 |
)
|
22 |
-
model =
|
23 |
model = get_peft_model(model, lora_config)
|
24 |
model.gradient_checkpointing_enable()
|
25 |
model_save_path = '/data/lora_finetuned_model' # Specify your desired save path
|
@@ -145,7 +145,7 @@ def predict(text):
|
|
145 |
|
146 |
@spaces.GPU(duration=120)
|
147 |
def run_train(dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
|
148 |
-
model =
|
149 |
result = fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad)
|
150 |
return result
|
151 |
# Create Gradio interface
|
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
+
from transformers import Trainer, TrainingArguments, AutoTokenizer, TFAutoModelForSeq2SeqLM
|
4 |
from transformers import DataCollatorForSeq2Seq
|
5 |
from datasets import load_dataset, concatenate_datasets, load_from_disk
|
6 |
import traceback
|
|
|
19 |
lora_dropout=0.1, # Dropout for LoRA layers
|
20 |
bias="none" # Bias handling
|
21 |
)
|
22 |
+
model = TFAutoModelForSeq2SeqLM.from_pretrained('google/t5-efficient-tiny', num_labels=2, force_download=True)
|
23 |
model = get_peft_model(model, lora_config)
|
24 |
model.gradient_checkpointing_enable()
|
25 |
model_save_path = '/data/lora_finetuned_model' # Specify your desired save path
|
|
|
145 |
|
146 |
@spaces.GPU(duration=120)
|
147 |
def run_train(dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
|
148 |
+
model = TFAutoModelForSeq2SeqLM.from_pretrained('/data/lora_finetuned_model', num_labels=2)
|
149 |
result = fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad)
|
150 |
return result
|
151 |
# Create Gradio interface
|