Kevin Fink
commited on
Commit
·
b994095
1
Parent(s):
069bfa6
dev
Browse files
app.py
CHANGED
@@ -12,10 +12,20 @@ import os
|
|
12 |
from huggingface_hub import login
|
13 |
from peft import get_peft_model, LoraConfig
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
@spaces.GPU(duration=120)
|
18 |
-
def fine_tune_model(
|
19 |
try:
|
20 |
torch.cuda.empty_cache()
|
21 |
def compute_metrics(eval_pred):
|
@@ -27,17 +37,10 @@ def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch
|
|
27 |
'eval_loss': eval_pred.loss, # If you want to include loss as well
|
28 |
}
|
29 |
login(api_key.strip())
|
30 |
-
|
31 |
-
r=16, # Rank of the low-rank adaptation
|
32 |
-
lora_alpha=32, # Scaling factor
|
33 |
-
lora_dropout=0.1, # Dropout for LoRA layers
|
34 |
-
bias="none" # Bias handling
|
35 |
-
)
|
36 |
|
37 |
# Load the model and tokenizer
|
38 |
-
|
39 |
-
model.gradient_checkpointing_enable()
|
40 |
-
#model = get_peft_model(model, lora_config)
|
41 |
|
42 |
|
43 |
# Set training arguments
|
@@ -86,7 +89,7 @@ def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch
|
|
86 |
except:
|
87 |
# Load the dataset
|
88 |
dataset = load_dataset(dataset_name.strip())
|
89 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
90 |
# Tokenize the dataset
|
91 |
def tokenize_function(examples):
|
92 |
|
@@ -148,7 +151,6 @@ try:
|
|
148 |
iface = gr.Interface(
|
149 |
fn=fine_tune_model,
|
150 |
inputs=[
|
151 |
-
gr.Textbox(label="Model Name (e.g., 'google/t5-efficient-tiny-nh8')"),
|
152 |
gr.Textbox(label="Dataset Name (e.g., 'imdb')"),
|
153 |
gr.Textbox(label="HF hub to push to after training"),
|
154 |
gr.Textbox(label="HF API token"),
|
|
|
12 |
from huggingface_hub import login
|
13 |
from peft import get_peft_model, LoraConfig
|
14 |
|
15 |
+
os.environ['HF_HOME'] = '/data/.huggingface'
|
16 |
+
|
17 |
+
lora_config = LoraConfig(
|
18 |
+
r=16, # Rank of the low-rank adaptation
|
19 |
+
lora_alpha=32, # Scaling factor
|
20 |
+
lora_dropout=0.1, # Dropout for LoRA layers
|
21 |
+
bias="none" # Bias handling
|
22 |
+
)
|
23 |
+
model = AutoModelForSeq2SeqLM.from_pretrained('google/t5-efficient-tiny-nh8', num_labels=2, force_download=True)
|
24 |
+
model = get_peft_model(model, lora_config)
|
25 |
+
model.gradient_checkpointing_enable()
|
26 |
|
27 |
@spaces.GPU(duration=120)
|
28 |
+
def fine_tune_model(dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
|
29 |
try:
|
30 |
torch.cuda.empty_cache()
|
31 |
def compute_metrics(eval_pred):
|
|
|
37 |
'eval_loss': eval_pred.loss, # If you want to include loss as well
|
38 |
}
|
39 |
login(api_key.strip())
|
40 |
+
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
# Load the model and tokenizer
|
43 |
+
|
|
|
|
|
44 |
|
45 |
|
46 |
# Set training arguments
|
|
|
89 |
except:
|
90 |
# Load the dataset
|
91 |
dataset = load_dataset(dataset_name.strip())
|
92 |
+
tokenizer = AutoTokenizer.from_pretrained('google/t5-efficient-tiny-nh8')
|
93 |
# Tokenize the dataset
|
94 |
def tokenize_function(examples):
|
95 |
|
|
|
151 |
iface = gr.Interface(
|
152 |
fn=fine_tune_model,
|
153 |
inputs=[
|
|
|
154 |
gr.Textbox(label="Dataset Name (e.g., 'imdb')"),
|
155 |
gr.Textbox(label="HF hub to push to after training"),
|
156 |
gr.Textbox(label="HF API token"),
|