Spaces:
Running
on
Zero
Running
on
Zero
tags: | |
- GUI agents | |
- vision-language-action model | |
- computer use | |
[Github](https://github.com/showlab/ShowUI/tree/main) | [Quick Start](https://huggingface.co/showlab/ShowUI-2B) | |
<img src="examples/showui.png" alt="ShowUI" width="640"> | |
ShowUI is a lightweight (2B) vision-language-action model designed for GUI agents. | |
[](https://huggingface.co/showlab/ShowUI-2B) | |
## ⭐ Quick Start | |
1. Load model | |
```python | |
import ast | |
import torch | |
from PIL import Image, ImageDraw | |
from qwen_vl_utils import process_vision_info | |
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor | |
def draw_point(image_input, point=None, radius=5): | |
if isinstance(image_input, str): | |
image = Image.open(BytesIO(requests.get(image_input).content)) if image_input.startswith('http') else Image.open(image_input) | |
else: | |
image = image_input | |
if point: | |
x, y = point[0] * image.width, point[1] * image.height | |
ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill='red') | |
display(image) | |
return | |
model = Qwen2VLForConditionalGeneration.from_pretrained( | |
"showlab/ShowUI-2B", | |
torch_dtype=torch.bfloat16, | |
device_map="auto" | |
) | |
min_pixels = 256*28*28 | |
max_pixels = 1344*28*28 | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels) | |
``` | |
2. **UI Grounding** | |
```python | |
img_url = 'examples/web_dbd7514b-9ca3-40cd-b09a-990f7b955da1.png' | |
query = "Nahant" | |
_SYSTEM = "Based on the screenshot of the page, I give a text description and you give its corresponding location. The coordinate represents a clickable location [x, y] for an element, which is a relative coordinate on the screenshot, scaled from 0 to 1." | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": _SYSTEM}, | |
{"type": "image", "image": img_url, "min_pixels": min_pixels, "max_pixels": max_pixels}, | |
{"type": "text", "text": query} | |
], | |
} | |
] | |
text = processor.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True, | |
) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
) | |
inputs = inputs.to("cuda") | |
generated_ids = model.generate(**inputs, max_new_tokens=128) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_text = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
)[0] | |
click_xy = ast.literal_eval(output_text) | |
# [0.73, 0.21] | |
draw_point(img_url, click_xy, 10) | |
``` | |
This will visualize the grounding results like (where the red points are [x,y]) | |
 | |
3. **UI Navigation** | |
- Set up system prompt. | |
```python | |
_NAV_SYSTEM = """You are an assistant trained to navigate the {_APP} screen. | |
Given a task instruction, a screen observation, and an action history sequence, | |
output the next action and wait for the next observation. | |
Here is the action space: | |
{_ACTION_SPACE} | |
""" | |
_NAV_FORMAT = """ | |
Format the action as a dictionary with the following keys: | |
{'action': 'ACTION_TYPE', 'value': 'element', 'position': [x,y]} | |
If value or position is not applicable, set it as `None`. | |
Position might be [[x1,y1], [x2,y2]] if the action requires a start and end position. | |
Position represents the relative coordinates on the screenshot and should be scaled to a range of 0-1. | |
""" | |
action_map = { | |
'web': """ | |
1. `CLICK`: Click on an element, value is not applicable and the position [x,y] is required. | |
2. `INPUT`: Type a string into an element, value is a string to type and the position [x,y] is required. | |
3. `SELECT`: Select a value for an element, value is not applicable and the position [x,y] is required. | |
4. `HOVER`: Hover on an element, value is not applicable and the position [x,y] is required. | |
5. `ANSWER`: Answer the question, value is the answer and the position is not applicable. | |
6. `ENTER`: Enter operation, value and position are not applicable. | |
7. `SCROLL`: Scroll the screen, value is the direction to scroll and the position is not applicable. | |
8. `SELECT_TEXT`: Select some text content, value is not applicable and position [[x1,y1], [x2,y2]] is the start and end position of the select operation. | |
9. `COPY`: Copy the text, value is the text to copy and the position is not applicable. | |
""", | |
'phone': """ | |
1. `INPUT`: Type a string into an element, value is not applicable and the position [x,y] is required. | |
2. `SWIPE`: Swipe the screen, value is not applicable and the position [[x1,y1], [x2,y2]] is the start and end position of the swipe operation. | |
3. `TAP`: Tap on an element, value is not applicable and the position [x,y] is required. | |
4. `ANSWER`: Answer the question, value is the status (e.g., 'task complete') and the position is not applicable. | |
5. `ENTER`: Enter operation, value and position are not applicable. | |
""" | |
} | |
_NAV_USER = """{system} | |
Task: {task} | |
Observation: <|image_1|> | |
Action History: {action_history} | |
What is the next action? | |
""" | |
``` | |
```python | |
img_url = 'examples/chrome.png' | |
split='web' | |
system_prompt = _NAV_SYSTEM.format(_APP=split, _ACTION_SPACE=action_map[split]) | |
query = "Search the weather for the New York city." | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": system_prompt}, | |
{"type": "image", "image": img_url, "min_pixels": min_pixels, "max_pixels": max_pixels}, | |
{"type": "text", "text": query} | |
], | |
} | |
] | |
text = processor.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True, | |
) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
) | |
inputs = inputs.to("cuda") | |
generated_ids = model.generate(**inputs, max_new_tokens=128) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_text = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
)[0] | |
print(output_text) | |
# {'action': 'CLICK', 'value': None, 'position': [0.49, 0.42]}, | |
# {'action': 'INPUT', 'value': 'weather for New York city', 'position': [0.49, 0.42]}, | |
# {'action': 'ENTER', 'value': None, 'position': None} | |
``` | |
 |