deploy-s2s-api / data /datamodule.py
3v324v23's picture
Add application file
c2bb5f2
raw
history blame
14.9 kB
# Copyright 2023 (authors: Feiteng Li)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import inspect
import logging
from functools import lru_cache
from pathlib import Path
from typing import Any, Dict, Optional
import torch
# from icefall.utils import str2bool
# from lhotse import CutSet, load_manifest_lazy
# from lhotse.dataset import (
# CutConcatenate,
# DynamicBucketingSampler,
# PrecomputedFeatures,
# SingleCutSampler,
# SpecAugment,
# )
# from lhotse.dataset.input_strategies import OnTheFlyFeatures
# from lhotse.utils import fix_random_seed
from torch.utils.data import DataLoader
from data.collation import get_text_token_collater
# from data.dataset import SpeechSynthesisDataset
from data.fbank import get_fbank_extractor
from data.input_strategies import PromptedPrecomputedFeatures
# PrecomputedFeatures = PrecomputedFeatures
class _SeedWorkers:
def __init__(self, seed: int):
self.seed = seed
def __call__(self, worker_id: int):
fix_random_seed(self.seed + worker_id)
def _get_input_strategy(input_strategy, dataset, cuts):
if input_strategy == "PromptedPrecomputedFeatures":
return PromptedPrecomputedFeatures(dataset, cuts)
return eval(input_strategy)()
class TtsDataModule:
"""
DataModule for VALL-E TTS experiments.
It assumes there is always one train and valid dataloader.
It contains all the common data pipeline modules used in TTS
experiments, e.g.:
- dynamic batch size,
- bucketing samplers,
- cut concatenation[not used & tested yet],
- augmentation[not used & tested yet],
- on-the-fly feature extraction[not used & tested yet]
This class should be derived for specific corpora used in TTS tasks.
"""
def __init__(self, args: argparse.Namespace):
self.args = args
@classmethod
def add_arguments(cls, parser: argparse.ArgumentParser):
group = parser.add_argument_group(
title="TTS data related options",
description="These options are used for the preparation of "
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
"effective batch sizes, sampling strategies, applied data "
"augmentations, etc.",
)
group.add_argument(
"--manifest-dir",
type=Path,
default=Path("data/tokenized"),
help="Path to directory with train/valid/test cuts.",
)
group.add_argument(
"--max-duration",
type=int,
default=40.0,
help="Maximum pooled recordings duration (seconds) in a "
"single batch. You can reduce it if it causes CUDA OOM.",
)
group.add_argument(
"--bucketing-sampler",
type=str2bool,
default=True,
help="When enabled, the batches will come from buckets of "
"similar duration (saves padding frames).",
)
group.add_argument(
"--num-buckets",
type=int,
default=10,
help="The number of buckets for the DynamicBucketingSampler"
"(you might want to increase it for larger datasets).",
)
group.add_argument(
"--concatenate-cuts",
type=str2bool,
default=False,
help="When enabled, utterances (cuts) will be concatenated "
"to minimize the amount of padding.",
)
group.add_argument(
"--duration-factor",
type=float,
default=1.0,
help="Determines the maximum duration of a concatenated cut "
"relative to the duration of the longest cut in a batch.",
)
group.add_argument(
"--gap",
type=float,
default=0.1,
help="The amount of padding (in seconds) inserted between "
"concatenated cuts. This padding is filled with noise when "
"noise augmentation is used.",
)
group.add_argument(
"--on-the-fly-feats",
type=str2bool,
default=False,
help="When enabled, use on-the-fly cut mixing and feature "
"extraction. Will drop existing precomputed feature manifests "
"if available.",
)
group.add_argument(
"--shuffle",
type=str2bool,
default=True,
help="When enabled (=default), the examples will be "
"shuffled for each epoch.",
)
group.add_argument(
"--drop-last",
type=str2bool,
default=False,
help="Whether to drop last batch. Used by sampler.",
)
group.add_argument(
"--return-cuts",
type=str2bool,
default=True,
help="When enabled, each batch will have the "
"field: batch['supervisions']['cut'] with the cuts that "
"were used to construct it.",
)
group.add_argument(
"--num-workers",
type=int,
default=8,
help="The number of training dataloader workers that "
"collect the batches.",
)
group.add_argument(
"--enable-spec-aug",
type=str2bool,
default=False,
help="When enabled, use SpecAugment for training dataset.",
)
group.add_argument(
"--spec-aug-time-warp-factor",
type=int,
default=80,
help="Used only when --enable-spec-aug is True. "
"It specifies the factor for time warping in SpecAugment. "
"Larger values mean more warping. "
"A value less than 1 means to disable time warp.",
)
group.add_argument(
"--input-strategy",
type=str,
default="PrecomputedFeatures",
help="AudioSamples or PrecomputedFeatures or PromptedPrecomputedFeatures",
)
group.add_argument(
"--dataset",
type=str,
default="ljspeech",
help="--input-strategy PromptedPrecomputedFeatures needs dataset name to prepare prompts.",
)
parser.add_argument(
"--text-tokens",
type=str,
default="data/tokenized/unique_text_tokens.k2symbols",
help="Path to the unique text tokens file",
)
parser.add_argument(
"--sampling-rate",
type=int,
default=24000,
help="""Audio sampling rate.""",
)
def train_dataloaders(
self,
cuts_train: CutSet,
sampler_state_dict: Optional[Dict[str, Any]] = None,
) -> DataLoader:
"""
Args:
cuts_train:
CutSet for training.
sampler_state_dict:
The state dict for the training sampler.
"""
transforms = []
if self.args.concatenate_cuts:
logging.info(
f"Using cut concatenation with duration factor "
f"{self.args.duration_factor} and gap {self.args.gap}."
)
# Cut concatenation should be the first transform in the list,
# so that if we e.g. mix noise in, it will fill the gaps between
# different utterances.
transforms = [
CutConcatenate(
duration_factor=self.args.duration_factor, gap=self.args.gap
)
] + transforms
input_transforms = []
if self.args.enable_spec_aug:
logging.info("Enable SpecAugment")
logging.info(
f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
)
# Set the value of num_frame_masks according to Lhotse's version.
# In different Lhotse's versions, the default of num_frame_masks is
# different.
num_frame_masks = 10
num_frame_masks_parameter = inspect.signature(
SpecAugment.__init__
).parameters["num_frame_masks"]
if num_frame_masks_parameter.default == 1:
num_frame_masks = 2
logging.info(f"Num frame mask: {num_frame_masks}")
input_transforms.append(
SpecAugment(
time_warp_factor=self.args.spec_aug_time_warp_factor,
num_frame_masks=num_frame_masks,
features_mask_size=27,
num_feature_masks=2,
frames_mask_size=100,
)
)
else:
logging.info("Disable SpecAugment")
logging.info("About to create train dataset")
if self.args.on_the_fly_feats:
# NOTE: the PerturbSpeed transform should be added only if we
# remove it from data prep stage.
# Add on-the-fly speed perturbation; since originally it would
# have increased epoch size by 3, we will apply prob 2/3 and use
# 3x more epochs.
# Speed perturbation probably should come first before
# concatenation, but in principle the transforms order doesn't have
# to be strict (e.g. could be randomized)
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
# Drop feats to be on the safe side.
train = SpeechSynthesisDataset(
get_text_token_collater(self.args.text_tokens),
cut_transforms=transforms,
feature_input_strategy=OnTheFlyFeatures(get_fbank_extractor()),
feature_transforms=input_transforms,
)
else:
train = SpeechSynthesisDataset(
get_text_token_collater(self.args.text_tokens),
feature_input_strategy=_get_input_strategy(
self.args.input_strategy, self.args.dataset, cuts_train
),
cut_transforms=transforms,
feature_transforms=input_transforms,
)
if self.args.bucketing_sampler:
logging.info("Using DynamicBucketingSampler")
train_sampler = DynamicBucketingSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,
num_buckets=self.args.num_buckets,
drop_last=self.args.drop_last,
)
else:
logging.info(
"Using SingleCutSampler and sort by duraton(ascending=True)."
)
cuts_train = cuts_train.to_eager().sort_by_duration(ascending=True)
train_sampler = SingleCutSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,
)
logging.info("About to create train dataloader")
if sampler_state_dict is not None:
logging.info("Loading sampler state dict")
train_sampler.load_state_dict(sampler_state_dict)
# 'seed' is derived from the current random state, which will have
# previously been set in the main process.
seed = torch.randint(0, 100000, ()).item()
worker_init_fn = _SeedWorkers(seed)
train_dl = DataLoader(
train,
sampler=train_sampler,
batch_size=None,
num_workers=self.args.num_workers,
persistent_workers=False,
worker_init_fn=worker_init_fn,
)
return train_dl
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
logging.info("About to create dev dataset")
if self.args.on_the_fly_feats:
validate = SpeechSynthesisDataset(
get_text_token_collater(self.args.text_tokens),
feature_input_strategy=OnTheFlyFeatures(get_fbank_extractor()),
cut_transforms=[],
)
else:
validate = SpeechSynthesisDataset(
get_text_token_collater(self.args.text_tokens),
feature_input_strategy=_get_input_strategy(
self.args.input_strategy, self.args.dataset, cuts_valid
),
cut_transforms=[],
)
valid_sampler = DynamicBucketingSampler(
cuts_valid,
max_duration=self.args.max_duration,
shuffle=False,
)
logging.info("About to create dev dataloader")
valid_dl = DataLoader(
validate,
sampler=valid_sampler,
batch_size=None,
num_workers=4,
persistent_workers=False,
)
return valid_dl
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
logging.debug("About to create test dataset")
test = SpeechSynthesisDataset(
get_text_token_collater(self.args.text_tokens),
feature_input_strategy=OnTheFlyFeatures(get_fbank_extractor())
if self.args.on_the_fly_feats
else _get_input_strategy(
self.args.input_strategy, self.args.dataset, cuts
),
cut_transforms=[],
)
sampler = DynamicBucketingSampler(
cuts,
max_duration=self.args.max_duration,
shuffle=False,
)
logging.debug("About to create test dataloader")
test_dl = DataLoader(
test,
batch_size=None,
sampler=sampler,
num_workers=self.args.num_workers,
)
return test_dl
@lru_cache()
def train_cuts(self) -> CutSet:
logging.info("About to get train cuts")
return load_manifest_lazy(
self.args.manifest_dir / "cuts_train.jsonl.gz"
)
@lru_cache()
def dev_cuts(self) -> CutSet:
logging.info("About to get dev cuts")
return load_manifest_lazy(self.args.manifest_dir / "cuts_dev.jsonl.gz")
@lru_cache()
def test_cuts(self) -> CutSet:
logging.info("About to get test cuts")
return load_manifest_lazy(self.args.manifest_dir / "cuts_test.jsonl.gz")