Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from langchain_core.prompts import PromptTemplate | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
import google.generativeai as genai | |
from langchain.chains.question_answering import load_qa_chain | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from PIL import Image | |
import io | |
# Configure Gemini API | |
genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) | |
# Load Mistral model | |
model_path = "nvidia/Mistral-NeMo-Minitron-8B-Base" | |
mistral_tokenizer = AutoTokenizer.from_pretrained(model_path) | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
dtype = torch.bfloat16 | |
mistral_model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device) | |
def process_pdf(file_path, question): | |
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3) | |
prompt_template = """Answer the question as precise as possible using the provided context. If the answer is not contained in the context, say "answer not available in context" \n\n Context: \n {context}?\n Question: \n {question} \n Answer: """ | |
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) | |
pdf_loader = PyPDFLoader(file_path) | |
pages = pdf_loader.load_and_split() | |
context = "\n".join(str(page.page_content) for page in pages[:30]) | |
stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) | |
stuff_answer = stuff_chain({"input_documents": pages, "question": question, "context": context}, return_only_outputs=True) | |
return stuff_answer['output_text'] | |
def process_image(image, question): | |
model = genai.GenerativeModel('gemini-pro-vision') | |
response = model.generate_content([image, question]) | |
return response.text | |
def generate_mistral_followup(answer): | |
mistral_prompt = f"Based on this answer: {answer}\nGenerate a follow-up question:" | |
mistral_inputs = mistral_tokenizer.encode(mistral_prompt, return_tensors='pt').to(device) | |
with torch.no_grad(): | |
mistral_outputs = mistral_model.generate(mistral_inputs, max_length=50) | |
mistral_output = mistral_tokenizer.decode(mistral_outputs[0], skip_special_tokens=True) | |
return mistral_output | |
def process_input(file, image, question): | |
try: | |
if file is not None: | |
gemini_answer = process_pdf(file.name, question) | |
elif image is not None: | |
gemini_answer = process_image(image, question) | |
else: | |
return "Please upload a PDF file or an image." | |
mistral_followup = generate_mistral_followup(gemini_answer) | |
combined_output = f"Gemini Answer: {gemini_answer}\n\nMistral Follow-up: {mistral_followup}" | |
return combined_output | |
except Exception as e: | |
return f"An error occurred: {str(e)}" | |
# Define Gradio Interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Multi-modal RAG Knowledge Retrieval using Gemini API and Mistral Model") | |
with gr.Row(): | |
with gr.Column(): | |
input_file = gr.File(label="Upload PDF File") | |
input_image = gr.Image(type="pil", label="Upload Image") | |
input_question = gr.Textbox(label="Ask about the document or image") | |
output_text = gr.Textbox(label="Answer - Combined Gemini and Mistral") | |
submit_button = gr.Button("Submit") | |
submit_button.click(fn=process_input, inputs=[input_file, input_image, input_question], outputs=output_text) | |
demo.launch() |