Spaces:
Runtime error
Runtime error
File size: 11,009 Bytes
ed7e222 4bdc439 ed7e222 fe26361 ed7e222 fe26361 ed7e222 fe26361 ed7e222 594f1f8 0a6b286 ed7e222 fe26361 ed7e222 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
"""
Input UI for RoseTTAfold All Atom
using two custom gradio components: gradio_molecule3d and gradio_cofoldinginput
"""
import gradio as gr
from gradio_cofoldinginput import CofoldingInput
from gradio_molecule3d import Molecule3D
import json
import yaml
from openbabel import openbabel
import zipfile
import tempfile
import os
from Bio.PDB import PDBParser, PDBIO
baseconfig = """job_name: "structure_prediction"
output_path: ""
checkpoint_path: RFAA_paper_weights.pt
database_params:
sequencedb: ""
hhdb: "pdb100_2021Mar03/pdb100_2021Mar03"
command: make_msa.sh
num_cpus: 4
mem: 64
protein_inputs: null
na_inputs: null
sm_inputs: null
covale_inputs: null
residue_replacement: null
chem_params:
use_phospate_frames_for_NA: True
use_cif_ordering_for_trp: True
loader_params:
n_templ: 4
MAXLAT: 128
MAXSEQ: 1024
MAXCYCLE: 4
BLACK_HOLE_INIT: False
seqid: 150.0
legacy_model_param:
n_extra_block: 4
n_main_block: 32
n_ref_block: 4
n_finetune_block: 0
d_msa: 256
d_msa_full: 64
d_pair: 192
d_templ: 64
n_head_msa: 8
n_head_pair: 6
n_head_templ: 4
d_hidden_templ: 64
p_drop: 0.0
use_chiral_l1: True
use_lj_l1: True
use_atom_frames: True
recycling_type: "all"
use_same_chain: True
lj_lin: 0.75
SE3_param:
num_layers: 1
num_channels: 32
num_degrees: 2
l0_in_features: 64
l0_out_features: 64
l1_in_features: 3
l1_out_features: 2
num_edge_features: 64
n_heads: 4
div: 4
SE3_ref_param:
num_layers: 2
num_channels: 32
num_degrees: 2
l0_in_features: 64
l0_out_features: 64
l1_in_features: 3
l1_out_features: 2
num_edge_features: 64
n_heads: 4
div: 4
"""
def convert_format(input_file, jobname, chain, deleteIndexes, attachmentIndex):
conv = openbabel.OBConversion()
conv.SetInAndOutFormats('cdjson', 'sdf')
# Add options
conv.AddOption("c", openbabel.OBConversion.OUTOPTIONS, "1")
with open(f"{jobname}_sm_{chain}.json", "w+") as fp:
fp.write(input_file)
mol = openbabel.OBMol()
conv.ReadFile(mol, f"{jobname}_sm_{chain}.json")
deleted_count = 0
# delete atoms in delete indexes
for index in sorted(deleteIndexes, reverse=True):
if index < attachmentIndex:
deleted_count += 1
atom = mol.GetAtom(index)
mol.DeleteAtom(atom)
attachmentIndex -= deleted_count
conv.WriteFile(mol, f"{jobname}_sm_{chain}.sdf")
return attachmentIndex
def prepare_input(input, jobname, baseconfig, hard_case):
input_categories = {"protein":"protein_inputs", "DNA":"na_inputs","RNA":"na_inputs", "ligand":"sm_inputs"}
# convert input to yaml format
yaml_dict = {"defaults":["base"], "job_name":jobname, "output_path": jobname}
list_of_input_files = []
if len(input["chains"]) == 0:
raise gr.Error("At least one chain must be provided")
for chain in input["chains"]:
if input_categories[chain["class"]] not in yaml_dict.keys():
yaml_dict[input_categories[chain["class"]]] = {}
if input_categories[chain["class"]] in ["protein_inputs", "na_inputs"]:
#write fasta
with open(f"{jobname}_{chain['chain']}.fasta", "w+") as fp:
fp.write(f">chain A\n{chain['sequence']}")
if input_categories[chain["class"]] == "na_inputs":
entry = {"input_type":chain["class"].lower(), "fasta":f"{jobname}/{jobname}_{chain['chain']}.fasta"}
else:
entry = {"fasta_file": f"{jobname}/{jobname}_{chain['chain']}.fasta"}
list_of_input_files.append(f"{jobname}_{chain['chain']}.fasta")
yaml_dict[input_categories[chain["class"]]][chain['chain']] = entry
if input_categories[chain['class']] == "sm_inputs":
if "smiles" in chain.keys():
entry = {"input_type": "smiles", "input": chain["smiles"]}
elif "sdf" in chain.keys():
# write to file
with open(f"{jobname}_sm_{chain['chain']}.sdf", "w+") as fp:
fp.write(chain["sdf"])
list_of_input_files.append(f"{jobname}_sm_{chain['chain']}.sdf")
entry = {"input_type": "sdf", "input": f"{jobname}/{jobname}_sm_{chain['chain']}.sdf"}
elif "name" in chain.keys():
list_of_input_files.append(f"metal_sdf/{chain['name']}_ideal.sdf")
entry = {"input_type": "sdf", "input": f"{jobname}/{chain['name']}_ideal.sdf"}
yaml_dict["sm_inputs"][chain['chain']] = entry
covale_inputs = []
if len(input["covMods"])>0:
yaml_dict["covale_inputs"]=""
for covMod in input["covMods"]:
new_attachment_index = covMod["attachmentIndex"]
if len(covMod["deleteIndexes"])>0:
new_attachment_index = convert_format(covMod["mol"],jobname, covMod["ligand"], covMod["deleteIndexes"], covMod["attachmentIndex"])
chirality_ligand = "null"
chirality_protein = "null"
if covMod["protein_symmetry"] in ["CW", "CCW"]:
chirality_protein = covMod["protein_symmetry"]
if covMod["ligand_symmetry"] in ["CW", "CCW"]:
chirality_ligand = covMod["ligand_symmetry"]
covale_inputs.append(((covMod[ "protein"], covMod["residue"], covMod["atom"]), (covMod["ligand"], new_attachment_index), (chirality_protein, chirality_ligand)))
if len(input["covMods"])>0:
yaml_dict["covale_inputs"] = json.dumps(json.dumps(covale_inputs))[1:-1].replace("'", "\"")
if hard_case:
yaml_dict["loader_params"]= {}
yaml_dict["loader_params"]["MAXCYCLE"] = 10
# write yaml to tmp
with open(f"/tmp/{jobname}.yaml", "w+") as fp:
# need to convert single quotes to double quotes
fp.write(yaml.dump(yaml_dict).replace("'", "\""))
# write baseconfig
with open(f"/tmp/base.yaml", "w+") as fp:
fp.write(baseconfig)
list_of_input_files.append(f"/tmp/{jobname}.yaml")
list_of_input_files.append(f"/tmp/base.yaml")
# convert dictionary to YAML
with zipfile.ZipFile(os.path.join("/tmp/", f"{jobname}.zip"), 'w') as zip_archive:
for file in set(list_of_input_files):
zip_archive.write(file, arcname= os.path.join(jobname,os.path.basename(file)),compress_type=zipfile.ZIP_DEFLATED)
return yaml.dump(yaml_dict).replace("'", "\""),os.path.join("/tmp/", f"{jobname}.zip")
def convert_bfactors(pdb_path):
with open(pdb_path, 'r') as f:
lines = f.readlines()
for i,line in enumerate(lines):
# multiple each bfactor by 100
if line[0:6] == 'ATOM ' or line[0:6] == 'HETATM':
bfactor = float(line[60:66])
bfactor *= 100
line = line[:60] + f'{bfactor:6.2f}' + line[66:]
lines[i] = line
with open(pdb_path.replace(".pdb", "_processed.pdb"), 'w') as f:
f.write(''.join(lines))
def run_rf2aa(jobname, zip_archive):
current_dir = os.getcwd()
try:
with zipfile.ZipFile(zip_archive, 'r') as zip_ref:
zip_ref.extractall(os.path.join(current_dir))
os.system(f"python -m rf2aa.run_inference --config-name {jobname}.yaml --config-path {current_dir}/{jobname}")
# scale pLDDT to 0-100 range in pdb output file
convert_bfactors(f"{current_dir}/{jobname}/{jobname}.pdb")
except Exception as e:
raise gr.Error(f"Error running RFAA: {e}")
return f"{current_dir}/{jobname}/{jobname}_processed.pdb"
def predict(input, jobname, dry_run, baseconfig, hard_case):
yaml_input, zip_archive = prepare_input(input, jobname, baseconfig, hard_case)
reps = []
for chain in input["chains"]:
if chain["class"] in ["protein", "RNA", "DNA"]:
reps.append({
"model": 0,
"chain": chain["chain"],
"resname": "",
"style": "cartoon",
"color": "alphafold",
"residue_range": "",
"around": 0,
"byres": False
})
elif chain["class"] == "ligand" and "name" not in chain.keys():
reps.append({
"model": 0,
"chain": chain["chain"],
"resname": "LG1",
"style": "stick",
"color": "whiteCarbon",
"residue_range": "",
"around": 0,
"byres": False
})
else:
reps.append({
"model": 0,
"chain": chain["chain"],
"resname": "LG1",
"style": "sphere",
"color": "whiteCarbon",
"residue_range": "",
"around": 0,
"byres": False
})
if dry_run:
return gr.Code(yaml_input, visible=True), gr.File(zip_archive, visible=True), gr.Markdown(f"""You can run your RFAA job using the following command: <pre>python -m rf2aa.run_inference --config-name {jobname}.yaml --config-path absolute/path/to/unzipped/{jobname}</pre>""", visible=True), Molecule3D(visible=False)
else:
pdb_file = run_rf2aa(jobname, zip_archive)
return gr.Code(yaml_input, visible=True), gr.File(zip_archive, visible=True),gr.Markdown(visible=False), Molecule3D(pdb_file,reps=reps,visible=True)
with gr.Blocks() as demo:
gr.Markdown("# RoseTTAFold All Atom UI")
gr.Markdown("""This UI allows you to generate input files for RoseTTAFold All Atom (RFAA) using the CofoldingInput widget. The input files can be used to run RFAA on your local machine. <br />
If you launch the UI directly on your local machine you can also directly run the RFAA prediction. <br />
More information in the official GitHub repository: [baker-laboratory/RoseTTAFold-All-Atom](https://github.com/baker-laboratory/RoseTTAFold-All-Atom)
""")
jobname = gr.Textbox("job1", label="Job Name")
with gr.Tab("Input"):
inp=CofoldingInput(label="Input")
hard_case = gr.Checkbox(False, label="Hard case (increase MAXCYCLE to 10)")
# only allow running the predictions if local
if os.environ.get("SPACE_HOST")!=None:
dry_run = gr.Checkbox(True, label="Only generate input files (dry run)", interactive=False)
else:
dry_run = gr.Checkbox(True, label="Only generate input files (dry run)")
with gr.Tab("Base config"):
base_config = gr.Code(baseconfig, label="Base config")
btn = gr.Button("Run")
config_file = gr.Code(label="YAML Hydra config for RFAA", visible=True)
runfiles = gr.File(label="files to run RFAA", visible=False)
instructions = gr.Markdown(visible=False)
out = Molecule3D(visible=False)
btn.click(predict, inputs=[inp, jobname, dry_run, base_config, hard_case], outputs=[config_file, runfiles, instructions, out])
if __name__ == "__main__":
demo.launch(share=True)
|